login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A201922
Triangle read by rows: T(n,m) = number of unlabeled graphs on n nodes with m connected components, m = 1,2,...,n.
6
1, 1, 1, 2, 1, 1, 6, 3, 1, 1, 21, 8, 3, 1, 1, 112, 30, 9, 3, 1, 1, 853, 145, 32, 9, 3, 1, 1, 11117, 1028, 154, 33, 9, 3, 1, 1, 261080, 12320, 1065, 156, 33, 9, 3, 1, 1, 11716571, 274806, 12513, 1074, 157, 33, 9, 3, 1, 1, 1006700565, 12007355, 276114, 12550, 1076, 157, 33, 9, 3, 1, 1
OFFSET
1,4
LINKS
P. Flajolet, R. Sedgewick, Analytic combinatorics, Theorem I.1 (Multiset)
R. J. Mathar, Statistics on Small Graphs, arXiv:1709.09000 (2017) Table 82
Peter Steinbach, Field Guide to Simple Graphs, Volume 4, Part 5 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
FORMULA
T(n,m) = sum over the partitions of n with m parts: 1*K1 + 2*K2 + ... + n*Kn = n, K1 + K2 + ... + Kn = m, of Product_{i=1..n} binomial(A001349(i) + Ki - 1, Ki).
O.g.f.: Product_{n>=1} 1/(1 - y*x^n)^A001349(n). - Geoffrey Critzer, Apr 19 2012
EXAMPLE
Triangle starts:
1
1 1
2 1 1
6 3 1 1
21 8 3 1 1
112 30 9 3 1 1
853 145 32 9 3 1 1 ...
MATHEMATICA
nn=10; c=(A000088=Table[NumberOfGraphs[n], {n, 0, nn}]; f[x_] = 1-Product[1/(1-x^k)^a[k], {k, 1, nn}]; a[0]=a[1]=a[2]=1; coes=CoefficientList[Series[f[x], {x, 0, nn}], x]; sol=First[Solve[Thread[Rest[coes+A000088]==0]]]; Table[a[n], {n, 0, nn}]/.sol); f[list_]:=Select[list, #>0&]; g=Product[1/(1-y x^n)^c[[n+1]], {n, 1, nn}]; Map[f, Drop[CoefficientList[Series[g, {x, 0, nn}], {x, y}], 1]] //Flatten (* Geoffrey Critzer, Apr 19 2012 (c in above Mma code is given by Jean Francois Alcover in A001349) *)
CROSSREFS
Cf. A001349 (first column), A000088 (row sum), A201968 (limits in the diagonals), A106240, A274934 (2nd column).
Sequence in context: A201198 A349933 A120258 * A181644 A144351 A213936
KEYWORD
nonn,tabl,nice
AUTHOR
Max Alekseyev, Dec 06 2011
STATUS
approved