login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A201925 Decimal expansion of the x nearest 0 that satisfies x^2+4x+3=e^x. 4
7, 9, 5, 2, 2, 6, 6, 1, 3, 8, 6, 0, 5, 4, 0, 7, 9, 8, 8, 9, 6, 2, 6, 1, 5, 5, 6, 3, 8, 8, 7, 1, 8, 0, 2, 9, 3, 6, 3, 7, 4, 8, 5, 3, 8, 5, 6, 2, 0, 8, 7, 8, 6, 0, 3, 5, 7, 5, 0, 0, 6, 4, 4, 0, 0, 6, 9, 4, 8, 1, 6, 2, 4, 2, 3, 4, 8, 1, 2, 6, 8, 5, 9, 0, 8, 7, 3, 9, 7, 0, 2, 5, 4, 6, 5, 0, 8, 1, 3 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A201741 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

Table of n, a(n) for n=0..98.

EXAMPLE

least:  -3.024014501135293784775589627797395351659...

nearest to 0:  -0.79522661386054079889626155638871...

greatest:  3.2986275628038651802559413164923413431...

MATHEMATICA

a = 1; b = 4; c = 3;

f[x_] := a*x^2 + b*x + c; g[x_] := E^x

Plot[{f[x], g[x]}, {x, -3.5, 3.5}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, -3.1, -3.0}, WorkingPrecision -> 110]

RealDigits[r]     (* A201924 *)

r = x /. FindRoot[f[x] == g[x], {x, -.8, -.7}, WorkingPrecision -> 110]

RealDigits[r]     (* A201925 *)

r = x /. FindRoot[f[x] == g[x], {x, 3.2, 3.3}, WorkingPrecision -> 110]

RealDigits[r]     (* A201926 *)

CROSSREFS

Cf. A201741.

Sequence in context: A179292 A198756 A140899 * A021561 A216104 A093206

Adjacent sequences:  A201922 A201923 A201924 * A201926 A201927 A201928

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Dec 06 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 12:01 EDT 2019. Contains 322429 sequences. (Running on oeis4.)