0,3

Table of n, a(n) for n=0..18.

Limit of A201922(m+n,m) as m tends to infinity.

a(n) = A201922(2*n,n) = A201922(2*n+1,n+1) = ...

a(n) = sum over the partitions of n of Product_{i=1..n} binomial(A001349(i+1)+Ki-1, Ki), where Ki is the number of parts equal to i, 1*K1 + 2*K2 + ... + n*Kn = n.

Sequence in context: A294035 A007489 A294638 * A264237 A097677 A138769

Adjacent sequences: A201965 A201966 A201967 * A201969 A201970 A201971

nonn

Max Alekseyev, Dec 07 2011

approved