This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A228074 A Fibonacci-Pascal triangle read by rows: T(n,0) = Fibonacci(n), T(n,n) = n and for n > 0: T(n,k) = T(n-1,k-1) + T(n-1,k), 0 < k < n. 34
 0, 1, 1, 1, 2, 2, 2, 3, 4, 3, 3, 5, 7, 7, 4, 5, 8, 12, 14, 11, 5, 8, 13, 20, 26, 25, 16, 6, 13, 21, 33, 46, 51, 41, 22, 7, 21, 34, 54, 79, 97, 92, 63, 29, 8, 34, 55, 88, 133, 176, 189, 155, 92, 37, 9, 55, 89, 143, 221, 309, 365, 344, 247, 129, 46, 10 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS Reinhard Zumkeller, Rows n = 0..120 of table, flattened EXAMPLE .    0:                                 0 .    1:                               1   1 .    2:                             1   2   2 .    3:                          2    3    4   3 .    4:                       3    5    7    7   4 .    5:                     5    8   12   14   11   5 .    6:                  8   13   20   26   25   16   6 .    7:               13   21   33   46   51   41   22   7 .    8:            21   34   54   79   97   92   63   29   8 .    9:          34   55   88  133  176  189  155   92   37   9 .   10:       55   89  143  221  309  365  344  247  129   46  10 .   11:     89  144  232  364  530  674  709  591  376  175  56   11 .   12:  144 233  376  596  894 1204 1383 1300  967  551  231  67   12 . MAPLE with(combinat); T:= proc (n, k) option remember; if k = 0 then fibonacci(n) elif k = n then n else T(n-1, k-1) + T(n-1, k) end if end proc; seq(seq(T(n, k), k = 0..n), n = 0..12); # G. C. Greubel, Sep 05 2019 MATHEMATICA T[n_, k_]:= T[n, k]= If[k==0, Fibonacci[n], If[k==n, n, T[n-1, k-1] + T[n -1, k]]]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] (* G. C. Greubel, Sep 05 2019 *) PROG (Haskell) a228074 n k = a228074_tabl !! n !! k a228074_row n = a228074_tabl !! n a228074_tabl = map fst \$ iterate    (\(u:_, vs) -> (vs, zipWith (+) ([u] ++ vs) (vs ++ [1]))) ([0], [1, 1]) (PARI) T(n, k) = if(k==0, fibonacci(n), if(k==n, n, T(n-1, k-1) + T(n-1, k))); for(n=0, 12, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Sep 05 2019 (Sage) def T(n, k):     if (k==0): return fibonacci(n)     elif (k==n): return n     else: return T(n-1, k) + T(n-1, k-1) [[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Sep 05 2019 (GAP) T:= function(n, k)     if k=0 then return Fibonacci(n);     elif k=n then return n;     else return T(n-1, k-1) + T(n-1, k);     fi;   end; Flat(List([0..12], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Sep 05 2019 CROSSREFS Cf. A000045 (left edge), A001477 (right edge), A228078 (row sums), A027988 (maxima per row); diagonals T(*,k): A000045, A000071, A001924, A014162, A014166, A053739, A053295, A053296, A053308, A053309; diagonals T(k,*): A001477, A001245, A004006, A027927, A027928, A027929, A027930, A027931, A027932, A027933; some other Fibonacci-Pascal triangles: A027926, A036355, A037027, A074829, A105809, A109906, A111006, A114197, A162741. Sequence in context: A057748 A057747 A281965 * A152803 A187181 A211187 Adjacent sequences:  A228071 A228072 A228073 * A228075 A228076 A228077 KEYWORD nonn,tabl,look AUTHOR Reinhard Zumkeller, Aug 15 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 21:17 EDT 2019. Contains 328038 sequences. (Running on oeis4.)