This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A005200 Total number of fixed points in rooted trees with n nodes. (Formerly M1247) 8
 1, 2, 4, 11, 28, 78, 213, 598, 1670, 4723, 13356, 37986, 108193, 309169, 884923, 2538369, 7292170, 20982220, 60451567, 174385063, 503600439, 1455827279, 4212464112, 12199373350, 35357580112, 102552754000, 297651592188, 864460682777, 2512115979800, 7304240074858 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe and Alois P. Heinz, Table of n, a(n) for n = 1..1000 (first 200 terms from T. D. Noe) F. Harary and E. M. Palmer, Probability that a point of a tree is fixed, Math. Proc. Camb. Phil. Soc. 85 (1979) 407-415. FORMULA G.f. satisfies A(x)=T(x)[ 1+A(x)-A(x^2) ], where T(x)=x+x^2+2*x^3+... is g.f. for A000081. MAPLE # First construct T(x), the g.f. for A000081. Then we form A005200 = s and its g.f. A as follows: s := [ 1, 2 ]; A := series(add(s[ i ]*x^i, i=1..2), x, 3); G := series(subs(x=x^2, A), x, 3); for n from 3 to 30 do t1 := coeff(T, x, n)+add( coeff(T, x, i)*s[ n-i ], i=1..n-1)-add(coeff(T, x, i)*coeff(G, x, n-i), i=1..n-1); s := [ op(s), t1 ]; A := series(A+t1*x^n, x, n+1); G := series(subs(x=x^2, A), x, n+1); od: s; A; # second Maple program: with(numtheory): b:= proc(n) option remember; local d, j; if n<1 then 0 elif n=1 then 1 else add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1)/ (n-1) fi end: a:= proc(n) option remember; b(n) +add((b(n-i) -b(n-2*i)) *a(i), i=0..n-1) end: seq(a(n), n=1..100); # Alois P. Heinz, Sep 16 2008 MATHEMATICA terms = 30; (* T = g.f. of A000081 *) T[x_] = 0; Do[T[x_] = x*Exp[Sum[ T[x^k]/k, {k, 1, terms}]] + O[x]^(terms+1) // Normal, terms+1]; A[_] = 0; Do[A[x_] = T[x]*(1 + A[x] - A[x^2]) + O[x]^(terms+1) // Normal, terms+1]; Drop[CoefficientList[A[x], x] , 1] (* Jean-François Alcover, Sep 30 2011, updated Jan 11 2018 *) b[n_] := b[n] = Module[{d, j}, If[n<1, 0, If[n == 1, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n-j], {j, 1, n-1}]/(n-1)]]]; a[n_] := a[n] = b[n] + Sum[ (b[n-i] - b[n-2*i])*a[i], {i, 0, n-1}]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *) CROSSREFS Cf. A000081, A005201, A000055. Sequence in context: A007048 A148132 A032101 * A148133 A148134 A151425 Adjacent sequences:  A005197 A005198 A005199 * A005201 A005202 A005203 KEYWORD nonn,easy,nice AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 15:20 EDT 2019. Contains 328161 sequences. (Running on oeis4.)