login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A005202
Total number of fixed points in planted trees with n nodes.
(Formerly M3282)
2
0, 1, 0, 1, 1, 4, 6, 14, 28, 60, 125, 263, 558, 1181, 2513, 5339, 11392, 24290, 51926, 111017, 237757, 509404, 1092713, 2345256, 5038015, 10828720, 23291759, 50126055, 107939753, 232550011, 501270200, 1080996244, 2332221316, 5033764628, 10868950676, 23476998980, 50728408182, 109649040738, 237081174662, 512767906801, 1109354495908
OFFSET
1,6
COMMENTS
From R. J. Mathar, Apr 13 2019: (Start)
The associated triangle H_{p,j}, p >= 1, 1 <= j <= p, a(n) = Sum_{j=1..p} j*H_{p,j}, row sums in A001678, starts:
1;
0, 0;
1, 0, 0;
1, 0, 0, 0;
1, 0, 1, 0, 0;
1, 1, 1, 0, 0, 0;
2, 2, 1, 0, 1, 0, 0;
1, 4, 2, 2, 1, 0, 0, 0;
3, 4, 4, 5, 2, 0, 1, 0, 0;
3, 7, 7, 9, 4, 4, 1, 0, 0, 0;
5, 9, 15, 14, 11, 9, 3, 0, 1, 0, 0;
4, 14, 23, 28, 25, 19, 7, 6, 1, 0, 0, 0;
11, 15, 39, 46, 55, 38, 24, 14, 5, 0, 1, 0, 0;
6, 32, 54, 86, 97, 86, 64, 36, 11, 9, 1, 0, 0, 0;
(End)
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
MAPLE
Hpj := proc(Hofxy, p, j)
coeftayl(Hofxy, x=0, p) ;
coeftayl(%, y=0, j) ;
simplify(%) ;
end proc:
Hxy := proc(x, y, pmax, hxyinit)
if pmax = 0 then
x*y ;
else
pp := 1;
for p from 1 to pmax do
t :=1 ;
for j from 1 to p do
t := t*(1+x^p*y^j+add(x^(k*p), k=2..pmax+1))^Hpj(hxyinit, p, j) ;
end do:
pp := pp*t ;
end do:
x*y*%/(1+x*y) ;
end if;
end proc:
hxy := Hxy(x, y, 0, 0) ;
for pmax from 2 to 20 do
Hxy(x, y, pmax, hxy) ;
taylor(%, x=0, pmax+2) ;
convert(%, polynom) ;
taylor(%, y=0, pmax+2) ;
hxy := convert(%, polynom) ;
for p from 0 to pmax do
Ap := 0 ;
for j from 1 to p do
Ap := Ap+j*Hpj(hxy, p, j) ;
end do:
printf("%d, ", Ap) ;
end do:
print() ;
end do: # R. J. Mathar, Apr 13 2019
MATHEMATICA
Hpj[Hofxy_, p_, j_] := SeriesCoefficient[SeriesCoefficient[Hofxy, {x, 0, p}] , {y, 0, j}];
Hxy [x_, y_, pMax_, hxyinit_] := If [pMax == 0, x y, pp = 1; For[p = 1, p <= pMax, p++, t = 1; For[j = 1, j <= p, j++, t = t(1 + x^p y^j + Sum[x^(k*p), {k, 2, pMax + 1}])^Hpj[hxyinit, p, j]]; pp = pp t]; x*y* pp/(1 + x y)];
hxy = Hxy[x, y, 0, 0];
Reap[For[pMax = 2, pMax <= terms - 1, pMax++, Print["pMax = ", pMax]; sx = Series[Hxy[x, y, pMax, hxy], {x, 0, pMax + 2}] // Normal; sy = Series[sx, {y, 0, pMax + 2}]; hxy = sy // Normal; For[p = 0, p <= pMax, p++, Ap = 0; For[j = 1, j <= p, j++, Ap = Ap + j Hpj[hxy, p, j]]; If[pMax == terms - 1, Print[Ap]; Sow[Ap]]]]][[2, 1]] (* Jean-François Alcover, Mar 22 2020, after R. J. Mathar *)
CROSSREFS
Cf. A005200.
Sequence in context: A009849 A303041 A103419 * A342602 A106526 A319766
KEYWORD
nonn,easy
EXTENSIONS
More terms from R. J. Mathar, Apr 13 2019
STATUS
approved