The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A093637 G.f.: A(x) = Product_{n>=0} 1/(1-a(n)*x^(n+1)) = Sum_{n>=0} a(n)*x^n. 44
 1, 1, 2, 4, 9, 20, 49, 117, 297, 746, 1947, 5021, 13378, 35237, 95123, 254825, 694987, 1882707, 5184391, 14177587, 39289183, 108337723, 301997384, 837774846, 2347293253, 6546903307, 18417850843, 51617715836, 145722478875, 409964137081, 1161300892672 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS From David Callan, Nov 02 2006: (Start) a(n) = number of (unlabeled, rooted) ordered trees on n edges such that, for each vertex of outdegree >= 1, the sizes of its subtrees are weakly increasing left to right. This notion is close to that of unlabeled, unordered rooted tree (A000081) but, for example, ./\...../\. |./\.../\.| |.........| count as two different trees here whereas A000081 treats them as the same. (End) We can also think of a(n) in terms of integer partitions, recursively: Let a(0)=1. For each partition n=p1+p2+p3+...+pr, consider the number q=a(p1-1)*a(p2-1)*...*a(pr-1). Then, summing these q over all the partitions of n gives a(n). - Daniele P. Morelli, May 22 2010 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..2000 FORMULA G.f. satisfies: A(x) = exp( Sum_{n>=1} Sum_{k>=1} a(k)^n * (x^k)^n /n ). - Paul D. Hanna, Oct 26 2011 EXAMPLE G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 9*x^4 + 20*x^5 + 49*x^6 +... where A(x) = 1/((1-x)*(1-x^2)*(1-2*x^3)*(1-4*x^4)*(1-9*x^5)*(1-20*x^6)*(1-49*x^7)...). MAPLE b:= proc(n, i) option remember; `if`(i>n, 0,        a(i-1)*`if`(i=n, 1, b(n-i, i)))+`if`(i>1, b(n, i-1), 0)     end: a:= n-> `if`(n=0, 1, b(n, n)): seq(a(n), n=0..40);  # Alois P. Heinz, Jul 20 2012 MATHEMATICA b[n_, i_] := b[n, i] = If[i>n, 0, a[i-1]*If[i == n, 1, b[n-i, i]]] + If[i>1, b[n, i-1], 0]; a[n_] := If[n == 0, 1, b[n, n]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Jun 15 2015, after Alois P. Heinz *) PROG (PARI) {a(n) = polcoeff(prod(i=0, n-1, 1/(1-a(i)*x^(i+1)))+x*O(x^n), n)} for(n=0, 25, print1(a(n), ", ")) (PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, 1/m*sum(k=1, n, polcoeff(A+O(x^k), k-1)^m*x^(m*k)) +x*O(x^n)))); polcoeff(A, n)} for(n=0, 25, print1(a(n), ", ")) CROSSREFS Cf. A000081, A093635, A093638. Sequence in context: A124497 A286983 A289971 * A068051 A032289 A006648 Adjacent sequences:  A093634 A093635 A093636 * A093638 A093639 A093640 KEYWORD nonn AUTHOR Paul D. Hanna, Apr 07 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 17 02:26 EDT 2021. Contains 343059 sequences. (Running on oeis4.)