This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A161703 a(n) = (4*n^3 - 12*n^2 + 14*n + 3)/3. 18
 1, 3, 5, 15, 41, 91, 173, 295, 465, 691, 981, 1343, 1785, 2315, 2941, 3671, 4513, 5475, 6565, 7791, 9161, 10683, 12365, 14215, 16241, 18451, 20853, 23455, 26265, 29291, 32541, 36023, 39745, 43715, 47941, 52431, 57193, 62235, 67565, 73191, 79121 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS {a(k): 0 <= k < 4} = divisors of 15: a(n) = A027750(A006218(14) + k + 1), 0 <= k < A000005(15). LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 R. Zumkeller, Enumerations of Divisors Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA a(n) = C(n,0) + 2*C(n,1) + 8*C(n,3). G.f.: (1-x-x^2+9*x^3)/(1-x)^4. - Colin Barker, Jan 08 2012 EXAMPLE Differences of divisors of 15 to compute the coefficients of their interpolating polynomial, see formula:   1     3     5    15      2     2    10         0     8            8 MAPLE A161703:=n->(4*n^3 - 12*n^2 + 14*n + 3)/3: seq(A161703(n), n=0..100); # Wesley Ivan Hurt, Jul 16 2017 MATHEMATICA CoefficientList[Series[(1 - x - x^2 + 9*x^3)/(1 - x)^4, {x, 0, 50}], x] (* G. C. Greubel, Jul 16 2017 *) PROG (MAGMA) [(4*n^3 - 12*n^2 + 14*n + 3)/3: n in [0..50]]; // Vincenzo Librandi, Dec 27 2010 (PARI) a(n)=n*(4*n^2-12*n+14)/3+1 \\ Charles R Greathouse IV, Sep 24 2015 CROSSREFS Cf. A000124, A000125, A000127, A002522, A005408, A006261, A016813, A058331, A080856, A086514, A161701, A161702, A161704, A161706-A161708, A161710, A161711-A161713, A161715. Sequence in context: A148503 A236571 A145939 * A018551 A103425 A119472 Adjacent sequences:  A161700 A161701 A161702 * A161704 A161705 A161706 KEYWORD nonn,easy AUTHOR Reinhard Zumkeller, Jun 17 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 18 18:43 EST 2018. Contains 318243 sequences. (Running on oeis4.)