login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A161703 a(n) = (4*n^3 - 12*n^2 + 14*n + 3)/3. 18
1, 3, 5, 15, 41, 91, 173, 295, 465, 691, 981, 1343, 1785, 2315, 2941, 3671, 4513, 5475, 6565, 7791, 9161, 10683, 12365, 14215, 16241, 18451, 20853, 23455, 26265, 29291, 32541, 36023, 39745, 43715, 47941, 52431, 57193, 62235, 67565, 73191, 79121 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

{a(k): 0 <= k < 4} = divisors of 15:

a(n) = A027750(A006218(14) + k + 1), 0 <= k < A000005(15).

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

R. Zumkeller, Enumerations of Divisors

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

a(n) = C(n,0) + 2*C(n,1) + 8*C(n,3).

G.f.: (1-x-x^2+9*x^3)/(1-x)^4. - Colin Barker, Jan 08 2012

EXAMPLE

Differences of divisors of 15 to compute the coefficients of their interpolating polynomial, see formula:

  1     3     5    15

     2     2    10

        0     8

           8

MAPLE

A161703:=n->(4*n^3 - 12*n^2 + 14*n + 3)/3: seq(A161703(n), n=0..100); # Wesley Ivan Hurt, Jul 16 2017

MATHEMATICA

CoefficientList[Series[(1 - x - x^2 + 9*x^3)/(1 - x)^4, {x, 0, 50}], x] (* G. C. Greubel, Jul 16 2017 *)

PROG

(MAGMA) [(4*n^3 - 12*n^2 + 14*n + 3)/3: n in [0..50]]; // Vincenzo Librandi, Dec 27 2010

(PARI) a(n)=n*(4*n^2-12*n+14)/3+1 \\ Charles R Greathouse IV, Sep 24 2015

CROSSREFS

Cf. A000124, A000125, A000127, A002522, A005408, A006261, A016813, A058331, A080856, A086514, A161701, A161702, A161704, A161706-A161708, A161710, A161711-A161713, A161715.

Sequence in context: A148503 A236571 A145939 * A018551 A103425 A119472

Adjacent sequences:  A161700 A161701 A161702 * A161704 A161705 A161706

KEYWORD

nonn,easy

AUTHOR

Reinhard Zumkeller, Jun 17 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 22:42 EDT 2018. Contains 315270 sequences. (Running on oeis4.)