login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A020988 a(n) = (2/3)*(4^n-1). 62
0, 2, 10, 42, 170, 682, 2730, 10922, 43690, 174762, 699050, 2796202, 11184810, 44739242, 178956970, 715827882, 2863311530, 11453246122, 45812984490, 183251937962, 733007751850, 2932031007402, 11728124029610, 46912496118442 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Numbers whose binary representation is 10, n times (see A163662(n) for n >= 1). - Alexandre Wajnberg, May 31 2005

Numbers whose base-4 representation consists entirely of 2's; twice base-4 repunits. - Franklin T. Adams-Watters, Mar 29 2006

Expected time to finish a random Tower of Hanoi problem with 2n disks using optimal moves, so (since 2n is even and A010684(2n) = 1) a(n) = A060590(2n). - Henry Bottomley, Apr 05 2001

a(n) is the number of derangements of [2n + 3] with runs consisting of consecutive integers. E.g., a(1) = 10 because the derangements of {1, 2, 3, 4, 5} with runs consisting of consecutive integers are 5|1234, 45|123, 345|12, 2345|1, 5|4|123, 5|34|12, 45|23|1, 345|2|1, 5|4|23|1, 5|34|2|1 (the bars delimit the runs). - Emeric Deutsch, May 26 2003

For n > 0, also smallest numbers having in binary representation exactly n + 1 maximal groups of consecutive zeros: A087120(n) = a(n-1), see A087116. - Reinhard Zumkeller, Aug 14 2003

Number of walks of length 2n + 3 between any two diametrically opposite vertices of the cycle graph C_6. Example: a(0) = 2 because in the cycle ABCDEF we have two walks of length 3 between A and D: ABCD and AFED. - Emeric Deutsch, Apr 01 2004

From Paul Barry, May 18 2003: (Start)

Row sums of triangle using cumulative sums of odd-indexed rows of Pascal's triangle (start with zeros for completeness):

            0  0

            1  1

         1  4  4  1

      1  6 14 14  6  1

   1  8 27 49 49 27  8  1 (End)

a(n) gives the position of the n-th zero in A173732, i.e., A173732(a(n)) = 0 for all n and this gives all the zeros in A173732. - Howard A. Landman, Mar 14 2010

Smallest number having alternating bit sum -n. Cf. A065359. For n = 0, 1, ..., the last digit of a(n) is 0, 2, 0, 2, ... . - Washington Bomfim, Jan 22 2011

Number of toothpicks minus 1 in the toothpick structure of A139250 after 2^n stages. - Omar E. Pol, Mar 15 2012

For n > 0 also partial sums of the odd powers of 2 (A004171). - K. G. Stier, Nov 04 2013

Values of m such that binomial(4*m + 2, m) is odd. Cf. A002450. - Peter Bala, Oct 06 2015

For a(n) > 2, values of m such that m is two steps away from a power of 2 under the Collatz iteration. - Roderick MacPhee, Nov 10 2016

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..170 from Vincenzo Librandi)

Andrei Asinowski, Cyril Banderier, Benjamin Hackl, On extremal cases of pop-stack sorting, Permutation Patterns (Z├╝rich, Switzerland, 2019).

Andrei Asinowski, Cyril Banderier, Benjamin Hackl, Flip-sort and combinatorial aspects of pop-stack sorting, arXiv:2003.04912 [math.CO], 2020.

Peter Bala, A characterization of A002450, A020988 and A080674.

John Brillhart and Peter Morton, A case study in mathematical research: the Golay-Rudin-Shapiro sequence, Amer. Math. Monthly, 103 (1996) 854-869.

Nobushige Kurokawa, Zeta functions over F_1, Proc. Japan Acad., 81, Ser. A (2005), 180-184. See Theorem 3 (3).

Andrei K. Svinin, Tuenter polynomials and a Catalan triangle, arXiv:1603.05748 [math.CO], 2016. See p.3.

Index entries for linear recurrences with constant coefficients, signature (5,-4).

FORMULA

a(n) = 4*a(n-1) + 2, a(0) = 0.

a(n) = A026644(2*n).

a(n) = A007583(n) - 1 = A039301(n+1) - 2 = A083584(n-1) + 1.

E.g.f. : (2/3)*(exp(4*x)-exp(x)). - Paul Barry, May 18 2003

a(n) = A007583(n+1) - 1 = A039301(n+2) - 2 = A083584(n) + 1. - Ralf Stephan, Jun 14 2003

G.f.: 2*x/((1-x)*(1-4*x)). - R. J. Mathar, Sep 17 2008

a(n) = a(n-1) + 2^(2n-1), a(0) = 0. - Washington Bomfim, Jan 22 2011

a(n) = A193652(2*n). - Reinhard Zumkeller, Aug 08 2011

a(n) = 5*a(n-1) - 4*a(n-2) (n > 1), a(0) = 0, a(1) = 2. - L. Edson Jeffery, Mar 02 2012

a(n) = (2/3)*A024036(n). - Omar E. Pol, Mar 15 2012

a(n) = 2*A002450(n). - Yosu Yurramendi, Jan 24 2017

From Seiichi Manyama, Nov 24 2017: (Start)

Zeta_{GL(2)/F_1}(s) = Product_{k = 1..4} (s-k)^(-b(2,k)), where Sum b(2,k)*t^k = t*(t-1)*(t^2-1). That is Zeta_{GL(2)/F_1}(s) = (s-3)*(s-2)/((s-4)*(s-1)).

Zeta_{GL(2)/F_1}(s) = Product_{n > 0} (1 - (1/s)^n)^(-A295521(n)) = Product_{n > 0} (1 - x^n)^(-A295521(n)) = (1-3*x)*(1-2*x)/((1-4*x)*(1-x)) = 1 + Sum_{k > 0} a(k-1)*x^k (x=1/s). (End)

From Oboifeng Dira, May 29 2020: (Start)

a(n) = A078008(2n+1) (second bisection).

a(n) = Sum_{k=0..n} binomial(2n+1,mod(n+2,3)+3k). (End)

MAPLE

A020988 := proc(n)

    2*(4^n-1)/3 ;

end proc: # R. J. Mathar, Feb 19 2015

MATHEMATICA

(2(4^Range[0, 30] - 1))/3 (* or *) LinearRecurrence[{5, -4}, {0, 2}, 30] (* Harvey P. Dale, Sep 25 2013 *)

PROG

(MAGMA) [(2/3)*(4^n-1): n in [0..40] ]; // Vincenzo Librandi, Apr 28 2011

(PARI) vector(100, n, n--; (2/3)*(4^n-1)) \\ Altug Alkan, Oct 06 2015

(PARI) Vec(2*z/((1-z)*(1-4*z)) + O(z^30)) \\ Altug Alkan, Oct 11 2015

(Scala) (((List.fill(20)(4: BigInt)).scanLeft(1: BigInt)(_ * _)).map(2 * _)).scanLeft(0: BigInt)(_ + _) // Alonso del Arte, Sep 12 2019

CROSSREFS

Cf. A020989, A108019, A295521.

Sequence in context: A276666 A302524 A084180 * A177238 A084480 A309182

Adjacent sequences:  A020985 A020986 A020987 * A020989 A020990 A020991

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

Edited by N. J. A. Sloane, Sep 06 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 17:16 EST 2020. Contains 338954 sequences. (Running on oeis4.)