login
This site is supported by donations to The OEIS Foundation.

 

Logo

110 people attended OEIS-50 (videos, suggestions); annual fundraising drive to start soon (donate); editors, please edit! (stack is over 300), your editing is more valuable than any donation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A020988 (2/3)*(4^n-1). 40
0, 2, 10, 42, 170, 682, 2730, 10922, 43690, 174762, 699050, 2796202, 11184810, 44739242, 178956970, 715827882, 2863311530, 11453246122, 45812984490, 183251937962, 733007751850, 2932031007402, 11728124029610, 46912496118442 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Numbers whose binary representations is 10, n times (see A163662(n) for n >= 1). - Alexandre Wajnberg, May 31 2005

Numbers whose base 4 representation consists entirely of 2's; twice base 4 repunits. - Franklin T. Adams-Watters, Mar 29 2006

Expected time to finish a random Tower of Hanoi problem with 2n disks using optimal moves, so (since 2n is even and A010684(2n)=1) a(n)=A060590(2n). - Henry Bottomley, Apr 05 2001

a(n)=number of derangements of [2n+3] with runs consisting of consecutive integers. E.g. a(1)=10 because the derangements of {1,2,3,4,5} with runs consisting of consecutive integers are 5|1234, 45|123, 345|12, 2345|1, 5|4|123, 5|34|12, 45|23|1, 345|2|1, 5|4|23|1, 5|34|2|1 (the bars delimit the runs). - Emeric Deutsch, May 26 2003

For n>0 also smallest numbers having in binary representation exactly n+1 maximal groups of consecutive zeros: A087120(n)=a(n-1), see A087116. - Reinhard Zumkeller, Aug 14 2003

Number of walks of length 2n+3 between any two diametrically opposite vertices of the cycle graph C_6. Example: a(0)=2 because in the cycle ABCDEF we have two walks of length 3 between A and D: ABCD and AFED. - Emeric Deutsch, Apr 01 2004

From Paul Barry, May 18 2003: (Start)

Row sums of triangle using cumulative sums of odd-indexed rows of Pascal's triangle (start with zeros for completeness):

. . . . 0 . 0

. . . . 1 . 1

. . . 1 4 . 4 1

. . 1 6 14 14 6 1

.1 8 27 49 49 27 8 1  (End).

a(n) gives the position of the n-th zero in A173732, i.e. A173732(a(n))=0 for all n and this gives all the zeros in A173732. [Howard A. Landman, Mar 14 2010]

Smallest number having alternating bit sum -n. Cf. A065359.  For n=0,1,..., the last digit of a(n) is 0,2,0,2,... . - Washington Bomfim, Jan 22 2011

Number of toothpicks minus 1 in the toothpick structure of A139250 after 2^n stages. - Omar E. Pol, Mar 15 2012

For n>0 also partial sums of the odd powers of 2 (A004171). - K. G. Stier, Nov 04 2013

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..170

J. Brillhart and P. Morton, A case study in mathematical research: the Golay-Rudin-Shapiro sequence, Amer. Math. Monthly, 103 (1996) 854-869.

Index to sequences with linear recurrences with constant coefficients, signature (5,-4).

FORMULA

a(n) = 4a(n-1) + 2, a(0)=0.

E.g.f. : (2/3)(exp(4x)-exp(x)). - Paul Barry, May 18 2003

a(n) = A007583(n+1)-1 = A039301(n+2)-2 = A083584(n)+1. - Ralf Stephan, Jun 14 2003

G.f.: 2x/((1-x)(1-4x)). [R. J. Mathar, Sep 17 2008]

a(n) = a(n-1) + 2^(2n-1), a(0) = 0. - Washington Bomfim, Jan 22 2011

a(n) = A193652(2*n). [Reinhard Zumkeller, Aug 08 2011]

a(n) = 5*a(n-1) - 4*a(n-2) (n>1), a(0)=0, a(1)=2. - L. Edson Jeffery, Mar 02 2012

a(n) = (2/3)*A024036(n). - Omar E. Pol, Mar 15 2012

MATHEMATICA

Table[ FromDigits[ Flatten[ Table[{1, 0}, {i, n}]], 2], {n, 0, 23}] (* Robert G. Wilson v, Jun 01 2005 *)

(2(4^Range[0, 30]-1))/3 (* or *) LinearRecurrence[{5, -4}, {0, 2}, 30] (* Harvey P. Dale, Sep 25 2013 *)

PROG

(PARI) an=0; print1(an, ", "); for(n=1, 23, an+=2^(2*n-1); print1(an, ", ")) \\ Washington Bomfim, Jan 22 2011

(MAGMA) [(2/3)*(4^n-1): n in [0..40] ]; // Vincenzo Librandi, Apr 28 2011

CROSSREFS

a(n) = A026644(2n).

a(n) = 2*A002450(n). These two sequences are both subsets of A000975.

a(n) = A007583(n)-1 = A039301(n+1)-2 = A083584(n-1)+1.

Cf. A020989.

Sequence in context: A181052 A024483 A084180 * A177238 A084480 A099553

Adjacent sequences:  A020985 A020986 A020987 * A020989 A020990 A020991

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

Edited by N. J. A. Sloane, Sep 06 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 26 02:56 EDT 2014. Contains 248566 sequences.