This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A161701 a(n) = (n^5 - 5*n^4 + 5*n^3 + 5*n^2 + 114*n + 120)/120. 20
 1, 2, 3, 4, 6, 12, 28, 64, 135, 262, 473, 804, 1300, 2016, 3018, 4384, 6205, 8586, 11647, 15524, 20370, 26356, 33672, 42528, 53155, 65806, 80757, 98308, 118784, 142536, 169942, 201408, 237369, 278290, 324667, 377028, 435934, 501980, 575796, 658048 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS {a(k): 0 <= k < 6} = divisors of 12: a(n) = A027750(A006218(11) + k + 1), 0 <= k < A000005(12). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..10000 R. Zumkeller, Enumerations of Divisors Index entries for linear recurrences with constant coefficients, signature (6,-15,20,-15,6,-1). FORMULA a(n) = C(n,0) + C(n,1) + C(n,4) + C(n,5). G.f.: (1-4*x+6*x^2-4*x^3+2*x^4)/(1-x)^6. - Colin Barker, Aug 20 2012 EXAMPLE Differences of divisors of 12 to compute the coefficients of their interpolating polynomial, see formula:   1     2     3     4     6    12      1     1     1     2     6         0     0     1     4            0     1     3               1     2                  1 MAPLE A161701:=n->(n^5 - 5*n^4 + 5*n^3 + 5*n^2 + 114*n + 120)/120: seq(A161701(n), n=0..60); # Wesley Ivan Hurt, Jul 16 2017 MATHEMATICA CoefficientList[Series[(1-4*x+6*x^2-4*x^3+2*x^4)/(1-x)^6, {x, 0, 50}], x] (* G. C. Greubel, Jul 16 2017 *) PROG (MAGMA) [(n^5 - 5*n^4 + 5*n^3 + 5*n^2 + 114*n + 120)/120: n in [0..50]]; // Vincenzo Librandi, Dec 27 2010 (PARI) a(n)=(n^5-5*n^4+5*n^3+5*n^2+114*n+120)/120 \\ Charles R Greathouse IV, Sep 24 2015 CROSSREFS Cf. A000124, A000125, A000127, A002522, A005408, A006261, A016813, A058331, A080856, A086514, A161702, A161703, A161704, A161706, A161707, A161708, A161710, A161711, A161712, A161713, A161715. Sequence in context: A214570 A306348 A078495 * A038504 A275448 A018405 Adjacent sequences:  A161698 A161699 A161700 * A161702 A161703 A161704 KEYWORD nonn,easy AUTHOR Reinhard Zumkeller, Jun 17 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 15:07 EDT 2019. Contains 328267 sequences. (Running on oeis4.)