login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060921 Bisection of Fibonacci triangle A037027: odd indexed members of column sequences of A037027 (not counting leading zeros). 10
1, 3, 2, 8, 10, 3, 21, 38, 22, 4, 55, 130, 111, 40, 5, 144, 420, 474, 256, 65, 6, 377, 1308, 1836, 1324, 511, 98, 7, 987, 3970, 6666, 6020, 3130, 924, 140, 8, 2584, 11822, 23109, 25088, 16435, 6588, 1554, 192, 9 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Row sums give A002450. Column sequences (without leading zeros) give for m=0..5: A001906, 2*A001870, A061182, 4*A061183, A061184, 2*A061185.

Companion triangle (odd indexed members) A060920.

LINKS

Table of n, a(n) for n=0..44.

Yidong Sun, Numerical Triangles and Several Classical Sequences, Fib. Quart. 43, no. 4, Nov. 2005, pp. 359-370.

FORMULA

a(n, m) = A037027(2*n+1-m, m).

a(n, m) = (2*(n-m+1)*A060920(n, m-1)+2*(2*n+1)*a(n-1, m-1))/(5*m), n >= m>0; a(n, 0) := S(n, 3)=A001906(n+1) with Chebyshev's S(n, x) polynomials A049310; else 0.

G.f. for column m >= 0: x^m*pFo(m+1, x)/(1-3*x+x^2)^(m+1), where pFo(n, x) := sum(A061177(n-1, m)*x^m, m=0..n-1) (row polynomials of signed triangle A061177).

G.f.: 1/(1-(3+2*y)*x+(1+y)^2*x^2). - Vladeta Jovovic, Oct 11 2003

EXAMPLE

{1}; {3,2}; {8,10,3}; {21,38,22,4}; ...; pFo(2,x)= 2*(1-x).

CROSSREFS

Sequence in context: A274181 A195055 A214683 * A163356 A209360 A095013

Adjacent sequences:  A060918 A060919 A060920 * A060922 A060923 A060924

KEYWORD

nonn,easy,tabl

AUTHOR

Wolfdieter Lang, Apr 20 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 20 18:41 EST 2018. Contains 299381 sequences. (Running on oeis4.)