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‘Cﬁ ‘ ON THE NUMBER OF GRAPHICAL PARTITIONS

Paul R. Stein A} gg
) :;
A graphical partition is one whose parts consﬁmsci 8 3

the degree sequence of at least one simple linear graph
(no loops or multiple lines). For graphs with p non-
isolated points and q lines, the number of possible
graphical partitions is denoted by gp,q' In the present
paper, enumeration formulae are derived for the simplest
cases q-p<6, and a general method for obtaining further
results is sketched. In addition, a table of gp,q is
included which covers the cases q<27 for all possible

values of p.

1. Let 7 be a partition of 2q into p positive parts
P
(1.1 T F 2q: 2q=1;ldi,d12d22...2d>0

In this paper we study the problem: how many partitions of the form (1.1)

are graphical? As the term is used here, a graphical partition is one

whose parts are the degrees of the points of at least one simple linear

graph (i.e. without self-loops or multiple lines). As is clear from
L__quation (1.1), we consider only graphs without isolated points

(i.e. no zero parts in 7); the extension to graphs with isolated points

is trivial (see Section 8.2).

Hakimi [1,2} has devised an algorithm for deciding whether
or not a partition m, as given by equation (1.1), is graphical. Let

S be the (ordered) sequence of parts of m:

S: dl’ d2, ceey

1 and subtracting 1 from each of the

dp' Form a new sequence S' by
dropping the leading term d

next dl terms of S:

' =d.-1, d

2 -1, ..., d

-1, d e
d +l d +2

3
The sequence S' can be constructed in this manner if and only if
dl < p-1. Dropping any zero terms in S and, if necessary, re-

arranging the remaining terms in nonincreasing order, we obtain a

*This paper is the result of work performed under the auspices of
the USERDA.

PROC. 9TH S-E CONF. COMBINATORICS, GRAPH
THEORY, AND COMPUTING, pp. 671-684.
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new partition n#' of 2q—2dl. Hakimi's theorem asserts that = is J

' is graphical. Thus one may decide

graphical if and only if =«
whether or not = is graphical by iterating the construction. If,
at any stage, the derived partition has its leading term > p-1, the
original partition = 1is not graphical; if, on the other hand, a
partition is reached that is recognized as graphical, then so is w.
For example, all partitioﬁs of the form (Za,lzb) are graphical by
construction provided that when b = 0, a # 1,2. Similarly for

partitions of the form (k,lk), etc.

In the following seven sections we enumerate graphical
partitions in the simplest cases, namely when p 2 q-6. Proofs are
given for p 2 g-3, but for p = q-4, q-5, and gq-6, the results are
stated without proof. The final section is devoted to listing
numerical results, many of which fall outside the scope of the

theorems given here.

2. A basic mapping. Let ® be a partition of 2q into p positive
parts, with largest part &(w)<p. Let {m} be the set of all such

partitions with given parameters p and q.

Lemma 1. The set {n} is 1-1 with the set {A} of partitions of

2q-p, restricted as follows:
(a) X has largest part &()) < p )
(b) The number of parts v()) of A satisfies v(A) < p-2. ‘.;>

To prove the lemma, we define a mapping M(X)»m by the following

2,...); Aa

conétruction. With A = (Al,Az,...), let Aa = (p,kl,k
is then a partition of 2q. We now take the conjugate of Aa — denoted
by Aé—— and set T = Xa. Clearly, w 1is a partition of 2q dinto p
parts; its largest part &(m) < p, because v(ka) < p-1. Since the
construction is uniquely reversible, M is a bijection. This

proves the lemma.

3. Here and in the rest of the paper we shall write gp q for the
b
number of partitions, with parameters p,q, which are graphical.
We deal first with the case p = q + 1. The result here is particularly

simple in view of

Theorem 1. Every partition m of 2q into q+l1 parts is the

degree sequence of at least one tree.
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bis theorem is evidently very well-known [2]. One proof goes as follows.

1’d2""’dk’ say —

and construct a tree with these d's as the degrees of the internal

We take the parts of 7 which are greater than 1 — d

nodes; this can generally be done in many ways. We then verify (by
counting) that the number of terminal nodes is gq+l-k. Since we have
a tree by construction, the number of lines is q, and the theorem

is proved.

Theorem 2. = P(q-1), the number of partitions of q-1.

gq+l |

Proof. Use the bijection of lemma 1 with X a partition of gq-1.
The cardinality of {A} 1is P(q-1), and since all = = M(}) are

graphical by theorem 1, theorem 2 is proved.

Remark: Theorem 2 may be stated in more picturesque language,
viz: the number of possible degree sequences for trees with q lines

is the number of partitions of gq-1.

The preceding result is generalized in

Theorem 3. g = P(q-j), 1 =3 <aq.

a+j,q
For j =1, this is theorem 2. The general case follows from
the observation that every partition of 2q into g+j parts,
2 <3 <gq, 1is the degree sequence of a disconnected graph consisting
L a tree with q - j+1 1lines and j-1 copies of the (unique) tree
with one line. Thus every such partition is graphical. The proof

is completed by invoking the bijection of lemma 1.
4. The case p = q.

Theorem 4. gq q = P(q) - [q/2]-1,

where the notation [x] means integral part of x.

Proof. Repeat the construction of theorem 1, i.e. construct a

tree with internal nodes of degree dl’dZ""’dk’ di>1’ i=1,2,...k.
It is easy to see that the tree so constructed will have ¢+l

lines (hence gq+2) points). Choose any two terminal nodes which are
directly connected to two distinct internal nodes. Connect these two

internal nodes by a line, and delete the two chosen terminal nodes

together with their corresponding lines. The result is a graph with
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possible if and only if w has at least 3 parts greater than 1; if

there were only two internal nodes in the tree, the structure produced
would be a multigraph (if there is only one internal node, the construct-
ion is obviously impossible). But those partitions = with less than

3 parts > 1 correspond, under the mapping M, to partitions X } q with
2(X) £ 2. For, if (X)) =2 (&(X) =1 is impossible), 7 will end in
lq—Z’ and since v(m) = q, T must contain only 2 parts > 1. Thus to
set up a correspondence between a subset of the {A} of lemma 1 and the
subset of {w} which consists of graphical partitions, we need only exclude
from {A} those partitions with 2{A}s2. Now the number of partitions

b Fquwith 2(u)<2 is 1+[q/2]. Thus the cardinality of the required
subset of {\A} 1is P(q)—[q/2]—l. (Note that all p } q with v(u)>q-2
have 2(u)<2). The theorem follows.

5. The cases p =q-r, r = 1,2,3.

5.1. We now introduce some further notation which will be used in the

sequel.

Def: If m = M(A) is graphical, A will be called legal; in the
contrary case, A is illegal.

Def: Let {L*(X)}% denote, for given p and q, the set of parti-
tions A whiih satisfy the conditions of lemma 1, ordered
by the usual lexicographical rule, the largest being som

A(i) (j). The éardinality

given partition , the smallest A

" .
of this set will be written |L (A)|; .

*
Remark: The notation L (A) implies what it is convenient
*
to call "lex order"; this differs from the
usual lex order only in excluding those parti-

tions A for which v(A) > p-2.

Def: Let m' be the partition derived from T by a single
application of the Hakimi algorithm (see Section 1); it
is clear that T' always exists, since £(7M) < p. If T has

parameters p,q, those of 7' will be denoted by p',q'.

Def: Let A' = M_l(v') be the partition (of 2q'-p') obtained
by applying to m' the inverse of the mapping defined in

Section 2.
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one cycle which has wm as its degree sequence. This construction is ‘-'f



b.Z. Lemma 2. Let A = (ml,mz,...) be a partition with parameters
p, 4, satisfying the conditions of lemma 1, and suppose that p < q,

so that r = q-p > 0. Write v = v(A). Then

(a) 7 has the form

_ mmy 97T
T = v+1,sl,sz,...,§m2_l,2 ,1 , 3 8y <v+1.

(b) If vl < mz—l, m' has parameters q' = q-v-1, p' = q-r-1,

r' = r-v, while £(1") = ml—l.
(¢) If vil = m2—l +k, 1<k < m, -m,, the parameters of T' are

the same as in (b) above, but £(A') = ml—l—k.

(d) If vl > m -1, m' has parameters q' = q-V-1 (as before),
1

p' = q+m1-r-v—3, r' = r—m1+2, with £(\") = mz—l.

The proof of this lemma is a matter of straightforward bookkeeping.

The principal tool is the well-known fact:

If vy = (Yl,Yz,---,Yk), then

Y Yo=Y Yo Yy Y <Y
5 (k K ey W17k 127 00 2).

]

This is easily established by using the Ferrers-Sylvester graph of .

P * 1
{ 3.3. Theorem 5. g |L (X)|2, q =5,

{h-'v q-1,q
with 2D = (q-1,2), and 2P = (4,2,197%)
Remark: Since for any graph with p points the maximum number of lines

is q = (g), q=5 1is indeed the smallest value for which r=1 1is

possible.

Corollary 1. g = p(q+l,q-1) - p(q+l,3) - 1,

q_l)q
where, as usual, p(n,m) is the number of partitions of n with

largest part < m.

Proof of Theorem 5. Let A F g+l with v(}) < q-3 and 2(}) < q-1.

Clearly, v 2 2. In accordance with the results given in lemma 2, only

the case vl > 2(A\)-1 need be considered, since for smaller v, r'=l-r
is negative, so that the corresponding A' 1is legal by theorems 2 and 3.
Therefore we take v+1 > 2(A)-1, so that r'=r-2£(X)+2 = 3-2(}). Now if

2()) 2 4, r'< 0 and w' is graphical. In other words, all & with
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2()x) = 4 which satisfy the conditions of lemma 1 are legal_(the ,J
case X = @,1q_3) has v = q-2, and is therefore excluded). Now

take £(A) = 3, so that r'=0 and p'=q'. But 1® 1is of the form

T o= (v+l,a,b,1q_4), whence 7' has at most two parts > 1. As shown

in the proof of theorem 4, this means that '

is not graphical.
Similarly for £(X) = 2 (7' has at most one part > 1). The theorem

follows.

Proof of Corollary 1. If we exclude A = (A,lq_3), the number of

legal XA given by the theorem is indeed one less than the difference
p(q+l),q-1) - p(q+l,3); in fact, p(q+l),q-1) 1is the number of par-
titions of ¢+l with largest part £ g-1, while the second term
removes those partitions of g+l with largest part < 3. The only
partition X in this range which is illegal by length is A = (A,Iq_3),

so subtracting 1 from the difference we obtain the correct count.

* 1
5.4. Theorem 6. g |L ()\)|2 , q =26,

@ =@, 175,

q-2,q

with A(l) = (gq-2,4) and A

Corollary 2. gq_2 q = p{(q+2,q9-2) - p{(q+2,3) - p(q-2,3)-3, g=8.

The proof of theorem 6 is similar to that of theorem 5, though
naturally somewhat more elaborate. According to lemma 1, we take
Ak gt2, 2(x) < g-2, v(A) £ q-4. Clearly v 2 2. \

-

(a) If q=6, {L*(A)} consists of the single partition A = (42), and
™= MQA)= (34),the degree sequence of the complete graph on 4
points. Thus g=6 is disposed of, and we may take q = 7.

(b) Suppose v = 2. We have A = (g-2-j, j+4), with 0 < j < [ﬂ%é].

33, 2972723 13) (note that this

m is therefore of the form T

is certainly graphical for j 0,1). Since £()\) = oy > 4, we

have vl = 3 < ml—l and r' = r-v = 0 by lemma 2. But vl = 3 < j+4,
so £(A') = m, -1 = j+3 > 3. Therefore T' is graphical by theorem 4.

2

(¢) Take v > 3. Then by lemma 2 we need only consider the case vl > m_ -1,

1

since in the contrary case r' = r-v = 2-v < 0, implying that '

is graphical. But for w1 > ml—l we have r' = r—m1+2 = 4-m
Since this is negative for my > 4, we have shown that all A

1

with Z()) > 4 are legal.
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bd) If A = (4,4,...) we shall have r' = 0, £(A\") = 3, implying that T’
is graphical and X legal. Therefore we have shown that the set
*
{L (A)}; with A(l), A(z) specified by theorem 6, consists of legal
partitions.
2y _ (,2 ;a6 .
(e) It remains to show that all A < A =147, 1 are illegal.

IR ) = 3,

First we take A = (4,m
v > 3, we have T = (v+1, a,b,2,1q_6)z. n' will have r'=r-m; + 2 =0,

) with m, < 4, Then, with m
but there will be at most two parts > 1, so 7' (and hence T) is

not graphical. Similarly for m, = 2.,

Now let my < 4, Since v 2 3, we have r' =1, 2(A'") = mz—l < 2,
and A' 1is illegal by theorem 5. Thus we have shown that all

A< (42, 1q—6) are illegal, and the proof of theorem 6 is complete.

Corollary 2 is straightforward except for the subtractive
constant 3, which enumerates the partitions in the interval which have

v > g-4; these are (6,lq—4), (5,1q_3), and (5,2,1q_5).

* 1
5.5 Theorem 7. g |L (A)|2, q29,

q_3)q
M _ (q-3,6) and AP = (5,4,2,1978).

with X

Corollary 3. gq_3 q = p(q+3,q-3) - p(q+3,4) - p(q-2,3) - 8, q =2 11.
b

In this case q = 9 is not the minimum q for which r = 3; we can
bave p =05, q =8, in which case it is easily verified that

gs’s = 2. The proof of theorem 7 is in every way similar to
that of the two previous theorems. First we show that all A
with £(}) > 5 are legal, then that all with £(}) = 5 which are

= X(z) are legal, then that A = (5,m ), m, < 4, is illegal, and

yoes
finally that all A with £(X) < 5 arezillegal. The details are un-—
illuminating. Actually, the legality of A for £(}) > 5 and its
illegality for £(A) < 5 follow from two general theorems which we
prove in the next section.

The corollary needs little comment. For those interested, we
list the 8 partitions which violate v(A) < g-5:

6,175, 7,154, 7,2,15%, 6,197, 6,2,1%), 6,25,177,

- -6
(6,3,197%), and (5,4,197%).
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6. Two general theorems. \.-)

Theorem 8. For r 2 0, X is legal if &(}A) = ml >r + 2.

In the proof of this theorem and the next, all the results of

lemma 2 will be assumed without further comment.

Proof of theorem 8. We assume that the theorem is true for all

r' £ r-2; as we have seen, it is true for r = 0,1,2.
- t = - - 1] - - = 1
(a) Let vl < m, 1. Then r r - v< r-2, and £(}") m 1Zm, so
that the result follows from the induction hypothesis.

(b) w1l = mz—l +k, 1€k < m, -m, . Here again r' = r-v, but
L(A") = m! =m, - (ktl). Thus m, is reduced by kt+l, while r

1 1 1

is reduced by v m2-2+k = m2—3+k+l. Thus mi > r'+2 if

m, > 3, in which case the result follows by induction. If m2=2,

m,~2 —r—
we have T = <V+l, a, 2 1 s 197F ml). Since W1 < ml—l, ' will

have q-r-1 terms; thus 7' will be graphical if £(w') = a-1 < q-r-2.

But a € Wl < ml—l < g-r-1, so the condition is satisfied. Thus
m' is graphical, and A is legal.

(¢) Finally, if vl > ml—l, r' = r-ml+2 < 0 because m > r+2 by
hypothesis. Thus T' is graphical and A is legal.

Theorem 9. Take m > 2 and let A F g+r satisfy the conditions of

lemma 1 with £(3) = m. Then if T 2 (m;l), A is illegal.

Y
Proof by Induction. We have seen that the theorem is true for J

r = 0,1,2. Assume it is true for r' < r. Suppose first that
m ] qtr, with 2 < m < gtr. Then

2
v =1+ [ﬂgE] > 1+ [25] 21+ [E—:%Eiz = m-2. Therefore v > m-2,

m _
whence #' has r' = r-m+2, and *()\') = m-1 = m'. But r' 2> (m2 1)

because 1 2 (mgl), and the illegality of A follows from that of

X' (induction hypothesis). The same proof goes through if m|q+r,

m -2m
where we can take v > [ o ] = m-2.

7. For general r = gq-p there is little of interest that can be
said which goes beyond the results of theorems 8 and 9. For r 2 4
the set of legal A is the sum of disjoint intervals

* *
(L (A)};, {L (A)}z,... the specification of the boundaries
A(i), A(J) of each interval being of ever—increasing complexity.

This is illustrated in the next three theorems, which we state

without proof.

- 678 -



i‘y‘Theorem 10. g

with (A b q+4)

L 1 * 3
ahnq " |L_(X?|2 + L (x)|4 , q = 10,

A(l) = first A with £(})
A(Z)

q-4

(6,4,2%,19719)

X(3) = first A with £(})
A(A)

il
W

= (52,3,lq-9)

Corollary 4. With q > 15, = p(q+4,q-4) + p(q-1,5)

gQ‘4,q

- {p(q+4,5) + p(q-1,4) + p(q-2,3) + p(q-6,2) + 17} .

Theorem 11. Byo5,q = |L*(X)|; + |L*(A)|2 + |L*(A)|2 , =12,
with (A b 9+5)

A = first A with £(3) = a-5
A 2 (7,4,23,19712)
A3 2 firse A with £(0) = 6
A 2 (6,5,3,2,197h

- AG) = firsr A with 2(0) = 5
A(6) (53 19710

Corollary 5. For q = 17 , = p(gq+5,9-5) + p(q-1,6) + p(q-10,5)

gQ"59q

- {p(q+5,6) + p(q-1,4) + p(q-2,3) + p(g-6,2) + 36}
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* * *
Theorem 12. =|L(n|;+|L(AH2+|L(AHZ+|LQAH;, q > 1%

gq_6, q
with (A + q+6)
A 2 firee A with £(h) = q-6

X(Z) = (8’4’24,lq_l4)

A3 2 firse A with £(0) = 7
A 2 (7,5,3,2%,19713,
A 2 firse A with £ = 6

A () o (62,42 19712,

A7) 2 first X of the form (6,5,...)

)\(8) (6,52,2,1q—12)

Corollary 6. For q 2 20, gq—6 6 = p{q+6,q9-6) + p(q-1,7) + p(q-6,6)
+ p(q-10,5) - {p(q+6,7) + p(q-1,4) + p(q-2,3) + 2 p(q-6,2)
+ p(q-9,2) + 70}.

*
In these theorems "first" refers to lex order. All cases with
r = 4,5, and 6 are covered except for a few small values of q where
the full interval structure is not realized. The values of g for )
q-r,q —

these cases may be found in Table I.

If one is interested in deriving theorems like those above for
r > 6, the boundaries of the various intervals can-be found by
computer search, and the theorems themselves can be established by
"straightforward but tedious” techniques. We remark that the use of
such theorems for the calculation of gp,q has great computational

advantage over direct application of the Hakimi algorithm.

Once the interval structure has been determined for some
given value of r, "explicit" formulae (like those in the corollaries)
may be written down immediately, save for the subtractive constant
which enumerates the number of partitions of q+r (in the legal
intervals) which violate v < g-r-2. But since this number is, in
fact, a constant for sufficiently largé q, it can be found by comparing

the expliciﬁ formula with the actual values of gq—r q calculated by
3
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other means (e.g., by use of the Hakimi algorithm). Of course, this
would not be necessary if we used the more general partition function
p(n,m,s), the number of partitions of n with largest part < m and
with at most s parts. Since, however, p(n,m,s) 1is not extensively

tabulated (in contrast to p(n,m) [3]), little would be gained thereby.

8. Numerical Results.

8.1. 1In Table I we give the values of g q £ 27, calculated by

p,q’
direct iteration of the Hakimi algorithm applied to T F 2q,

v(m) = p, with £(m) < p. 1In order to save space, we have
omitted the values with p >q; it follows from theorems 2 and 3
that these may be read off directly from a table of P(N), the
number of partitions of N. Table I may be used for checking
corollaries 1 through 6; in addition, many values of gp are

] . sq
given which are not covered by the theorems presented here.

8.2. Let T be the number of graphical partitions when zero parts

>

(i.e., isolated points) are allowed. Clearly, T =:£: g ;

P>9q i,q

i<p
in other words, we get Tp q by summing the columns of Table I.
>

If isolated points are allowed, any simple graph with p points
is in 1-1 correspondence with the "conjugate” graph (in which
lines and non-lines are interchanged). As a consequence of this

we have T s, q = (p) - q , so that Tp q is symmetric

=T _
P»q P,q 2 >
in q. This suggests an alternative scheme for the calculation
of gp Q" 1f 8; q is known for all i < p and all corresponding
>

’
values of q, the new values gp q need be calculated only for

2
has much to recommend it.

(&)

T
P»>9
0

q < [% ( p)] . It is not obvious, however, that such a scheme

Let T(p) = , and let L(p) be the total number of

q=
distinct linear graphs on p points [4]. These two sets of numbers
are compared in Table II (to‘get T(12), the calculation of gp,q was
extended through q = 33 for p < 12). The table shows just how poor

the degree sequence is as a tool for classifying linear graphs.

- 681 -



We wish to thank M. L. Stein for the calculation of Table 1
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TABLE I
gp.q for p < q

p a 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

3 o] © © 2 ¢

4 1 o 0

5 4 4 2 1 1 o _ ™ ®

6 7 9 11 11 9 7 5 2 1 -l £

7 11 15 22 26 29 29 26 23 18 13 8 5 2 1 1

8 17 25 38 49 63 74 81 83 84 77 69 57 44 34 24 15 9 5 2 1
9. 25 37 58 81 110 | 142 174 | 201 | 224 | 245 250 253 241 | 223] 197 | 169 138 109 83
10 36 55 87 | 124 | 176 | 239 | 311 | 387 |470 S48 627 692 | 745| 780 | 790 | 782 | 746 705|,
11 50 77 123 .179 261 365 492 647 82511021 1229 | 1461 | 1677 | 1903 | 2100 227(:)I 2399
12 70 | 108 (172 | 253 | 373 [ 530 | 736 991 | 1310 | 1685 |+2119 | 2612 | 3164 | 3754 | 4390 | 50138
13 94 146 | 233 | 345 | 513 [ 740 | 1039 | 1431 | 1932 | 2556 | 3308 | 4214 | 5256 | 6485 | 7847
14 127 198 | 314 [ 465 | 695 | 1008 { 1429 [ 1990 | 2730 | 3669 [ 4851 | 6317 | 8082 | 10200]
15 168 | 261 | 413 | 615 919 |1 3911910 | 2685 | 3715 | 5060 | 6778 | 8976 { 11689
16 222 345 543 806 | 1205 | 1757 | 2516 | 3550 | 4947 | 6785 | 9183 | 12287
17 288 447 701 | 1041 {1555 | 2271 | 3253 | 4610 | 6447 | 8897 [ 12114
18 375 580 903 | 1339 | 1995 [ 2909 | 4172 | 5915 | 8295 | 11481
19 p. 480 | 741 | 1149 [ 1702 | 2530 | 3687 | 5282 | 7500 | 10526
20 & ‘f} 2_5 1% 7' 616 [ 947 | 1460 | 2155 | 3195 | 4646 | 6650 | 9433
21 e - 781 (1196 | 1835 | 2706 | 3998 | 5805 8296
22 990 | 1511 | 2304 | 3386 | 4988 7223
23 1243 | 1890 | 2869 | 4207 | 6177
24 1562 | 2363 | 3567 5215
25 1945 | 2932 | 4405
26 2422 3635
27 2996|

/

{.)



p%&LW%«» f

} 4;3« j j.‘,

P T(p) L(p) \
1 1 1

2 2 2

3 4 4

4 11 11

5 31 34

6 102 156

7 342 1044

8 1213 12346

9 4361 274668

10 16016 12005168

11 59348 1018997864
12 222117 165091172592
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