This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A161708 a(n) = -n^3 + 7*n^2 - 5*n + 1. 20
 1, 2, 11, 22, 29, 26, 7, -34, -103, -206, -349, -538, -779, -1078, -1441, -1874, -2383, -2974, -3653, -4426, -5299, -6278, -7369, -8578, -9911, -11374, -12973, -14714, -16603, -18646, -20849, -23218, -25759, -28478, -31381, -34474, -37763, -41254 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS {a(k): 0 <= k < 4} = divisors of 22: a(n) = A027750(A006218(21) + k + 1), 0 <= k < A000005(22). LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..10000 R. Zumkeller, Enumerations of Divisors Index entries for linear recurrences with constant coefficients, signature (4, -6, 4, -1). FORMULA a(n) = C(n,0) + C(n,1) + 8*C(n,2) - 6*C(n,3). G.f.: -(-1+2*x-9*x^2+14*x^3)/(-1+x)^4. - R. J. Mathar, Jun 18 2009 a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) with a(0)=1, a(1)=2, a(2)=11, a(3)=22. - Harvey P. Dale, Nov 12 2013 E.g.f.: (-x^3 + 4*x^2 + x + 1)*exp(x). - G. C. Greubel, Jul 16 2017 EXAMPLE Differences of divisors of 22 to compute the coefficients of their interpolating polynomial, see formula:   1     2    11    22      1     9    11         8     2           -6 MATHEMATICA Table[-n^3+7n^2-5n+1, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 2, 11, 22}, 40] (* Harvey P. Dale, Nov 12 2013 *) PROG (MAGMA) [-n^3 + 7*n^2 - 5*n + 1: n in [0..40]]; // Vincenzo Librandi, Jul 17 2011 (PARI) a(n)=-n^3+7*n^2-5*n+1 \\ Charles R Greathouse IV, Sep 24 2015 CROSSREFS Cf. A005408, A000124, A016813, A086514, A000125, A058331, A002522, A161701, A161702, A161703, A000127, A161704, A161706, A161707, A161710, A080856, A161711, A161712, A161713, A161715, A006261. Sequence in context: A218340 A018491 A031010 * A076206 A018563 A018590 Adjacent sequences:  A161705 A161706 A161707 * A161709 A161710 A161711 KEYWORD sign,easy AUTHOR Reinhard Zumkeller, Jun 17 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 13 08:08 EST 2018. Contains 318082 sequences. (Running on oeis4.)