login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000666 Number of symmetric relations on n nodes.
(Formerly M1650 N0646)
8
1, 2, 6, 20, 90, 544, 5096, 79264, 2208612, 113743760, 10926227136, 1956363435360, 652335084592096, 405402273420996800, 470568642161119963904, 1023063423471189431054720, 4178849203082023236058229792, 32168008290073542372004082199424 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Each node may or may not be related to itself.

Also the number of rooted graphs on n+1 nodes.

The 1-1-correspondence is as follows. Given a rooted graph on n+1 nodes, replace each edge joining the root node to another node by a self-loop at that node and erase the root node. The result is an undirected graph on n nodes which is the graph of the symmetric relation.

Also the number of the graphs with n nodes whereby each node is colored or not colored. A loop can be interpreted as a colored node. - Juergen Will, Oct 31 2011

REFERENCES

R. L. Davis, The numbers of structures of finite relations, Proc. Amer. Math. Soc., 4 (1953), 486-494.

F. Harary, The number of linear, directed, rooted and connected graphs, Trans. Amer. Math. Soc., 78 (1955), 445-463.

F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, pp. 101, 241.

Harary, Frank; Palmer, Edgar M.; Robinson, Robert W.; Schwenk, Allen J.; Enumeration of graphs with signed points and lines. J. Graph Theory 1 (1977), no. 4, 295-308.

M. D. McIlroy, Calculation of numbers of structures of relations on finite sets, Massachusetts Institute of Technology, Research Laboratory of Electronics, Quarterly Progress Reports, No. 17, Sept. 15, 1955, pp. 14-22.

W. Oberschelp, Kombinatorische Anzahlbestimmungen in Relationen, Math. Ann., 174 (1967), 53-78.

R. W. Robinson, Numerical implementation of graph counting algorithms, AGRC Grant, Math. Dept., Univ. Newcastle, Australia, 1976.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

David Applegate, Table of n, a(n) for n = 0..80 [Shortened file because terms grow rapidly: see Applegate link below for additional terms]

David Applegate, Table of n, a(n) for n = 0..100

P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.

G. Pfeiffer, Counting Transitive Relations, Journal of Integer Sequences, Vol. 7 (2004), Article 04.3.2.

Marko Riedel, Maple program for A000666

Sage, Common Graphs (Graph Generators)

StackExchange, Enumerating Graphs with Self-Loops, Jan 23 2014

Eric Weisstein's World of Mathematics, Rooted Graph

FORMULA

Let G_{n+1,k} be the number of rooted graphs on n+1 nodes with k edges and let G_{n+1}(x) = Sum_{k=0..n(n+1)/2} G_{n+1,k} x^k. Thus a(n) = G_{n+1}(1). Let S_n(x_1, ..., x_n) denote the cycle index for Sym_n. (cf. the link in A000142).

Compute x_1*S_n and regard it as the cycle index of a set of permutations on n+1 points and find the corresponding cycle index for the action on the n(n+1)/2 edges joining those points (the corresponding "pair group"). Finally, by replacing each x_i by 1+x^i gives G_{n+1}(x). [Harary]

Example, n=2. S_2 = (1/2)*(x_1^2+x_2), x_1*S_2 = (1/2)*(x_1^3+x_1*x_2). The pair group is (1/2)*(x_1^2+x_1*x_2) and so G_3(x) = (1/2)*((1+x)^3+(1+x)*(1+x^2)) = 1+2*x+2*x^2+x^3; set x=1 to get a(2) = 6.

MAPLE

# see Riedel link above

MATHEMATICA

Join[{1, 2}, Table[CycleIndex[Join[PairGroup[SymmetricGroup[n]], Permutations[Range[n*(n-1)/2+1, n*(n+1)/2]], 2], s] /. Table[s[i]->2, {i, 1, n^2-n}], {n, 2, 8}]] (* Geoffrey Critzer, Nov 04 2011 *)

CROSSREFS

Cf. A000595, A001172, A001174, A006905, A000250.

Sequence in context: A241497 A079468 A124382 * A180890 A027321 A027315

Adjacent sequences:  A000663 A000664 A000665 * A000667 A000668 A000669

KEYWORD

nonn,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

Description corrected by Christian G. Bower

More terms from Vladeta Jovovic, Apr 18 2000

Entry revised by N. J. A. Sloane, Mar 06 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 28 12:57 EST 2014. Contains 250359 sequences.