login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A161710 (-6*n^7 + 154*n^6 - 1533*n^5 + 7525*n^4 - 18879*n^3 + 22561*n^2 - 7302*n + 2520)/2520. 21
1, 2, 3, 4, 6, 8, 12, 24, 39, -2, -295, -1308, -3980, -9996, -22150, -44808, -84483, -150534, -256001, -418588, -661806, -1016288, -1521288, -2226376, -3193341, -4498314, -6234123, -8512892, -11468896, -15261684, -20079482, -26142888 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

{a(k): 0 <= k < 8} = divisors of 24:

a(n) = A027750(A006218(23) + k + 1), 0 <= k < A000005(24).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

R. Zumkeller, Enumerations of Divisors

Index entries for linear recurrences with constant coefficients, signature (8,-28,56,-70,56,-28,8,-1).

FORMULA

a(n) = C(n,0) + C(n,1) + C(n,4) - 3*C(n,5) + 8*C(n,6) - 12*C(n,7).

G.f.: (1-6*x+15*x^2-20*x^3+16*x^4-12*x^5+18*x^6-24*x^7)/(1-x)^8. - Bruno Berselli, Jul 17 2011

a(0)=1, a(1)=2, a(2)=3, a(3)=4, a(4)=6, a(5)=8, a(6)=12, a(7)=24, a(n)=8*a(n-1)-28*a(n-2)+56*a(n-3)-70*a(n-4)+56*a(n-5)-28*a(n-6)+ 8*a(n-7)- a(n-8). - Harvey P. Dale, Jul 15 2012

EXAMPLE

Differences of divisors of 24 to compute the coefficients of their interpolating polynomial, see formula:

1 ... 2 ... 3 ... 4 ... 6 ... 8 .. 12 .. 24

.. 1 ... 1 ... 1 ... 2 ... 2 ... 4 .. 12

..... 0 ... 0 ... 1 ... 0 ... 2 ... 8

........ 0 ... 1 .. -1 ... 2 ... 6

........... 1 .. -2 ... 3 ... 4

............. -3 ... 5 ... 1

................. 8 .. -4

.................. -12.

MATHEMATICA

Table[(-6n^7+154n^6-1533n^5+7525n^4-18879n^3+22561n^2-7302n+2520)/2520, {n, 0, 40}] (* or *) LinearRecurrence[{8, -28, 56, -70, 56, -28, 8, -1}, {1, 2, 3, 4, 6, 8, 12, 24}, 40] (* Harvey P. Dale, Jul 15 2012 *)

PROG

(MAGMA) [(-6*n^7 + 154*n^6 - 1533*n^5 + 7525*n^4 - 18879*n^ 3 + 22561*n^2 - 7302*n + 2520)/2520: n in [0..40]]; // Vincenzo Librandi, Jul 17 2011

(Python)

A161710_list, m = [1], [-12, 80, -223, 333, -281, 127, -23, 1]

for _ in range(1, 10**2):

....for i in range(7):

........m[i+1]+= m[i]

....A161710_list.append(m[-1]) # Chai Wah Wu, Nov 09 2014

(PARI) a(n)=(-6*n^7+154*n^6-1533*n^5+7525*n^4-18879*n^3+22561*n^2-7302*n+2520)/2520 \\ Charles R Greathouse IV, Sep 24 2015

CROSSREFS

Cf. A005408, A000124, A016813, A086514, A000125, A058331, A002522, A161701, A161702, A161703, A000127, A161704, A161706, A161707, A161708, A080856, A161711, A161712, A161713, A161715, A006261, A018253, A161700, A161856.

Sequence in context: A018597 A018623 A018703 * A018758 A068597 A294342

Adjacent sequences:  A161707 A161708 A161709 * A161711 A161712 A161713

KEYWORD

sign,easy

AUTHOR

Reinhard Zumkeller, Jun 17 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 11 01:49 EST 2018. Contains 318049 sequences. (Running on oeis4.)