login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A161712 a(n) = (4*n^3 - 6*n^2 + 8*n + 3)/3. 17
1, 3, 9, 27, 65, 131, 233, 379, 577, 835, 1161, 1563, 2049, 2627, 3305, 4091, 4993, 6019, 7177, 8475, 9921, 11523, 13289, 15227, 17345, 19651, 22153, 24859, 27777, 30915, 34281, 37883, 41729, 45827, 50185, 54811, 59713, 64899, 70377, 76155 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

{a(k): 0 <= k < 4} = divisors of 27:

a(n) = A027750(A006218(26) + k + 1), 0 <= k < A000005(27).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

R. Zumkeller, Enumerations of Divisors

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

a(n) = C(n,0) + 2*C(n,1) + 4*C(n,2) + 8*C(n,3).

G.f.: ((x+1)(1+x(5x-2)))/(x-1)^4. - Harvey P. Dale, Apr 13 2011

E.g.f.: (1/3)*(4*x^3 + 6*x^2 + 6*x + 3)*exp(x). - G. C. Greubel, Jul 16 2017

EXAMPLE

Differences of divisors of 27 to compute the coefficients of their interpolating polynomial, see formula:

  1     3     9    27

     2     6    18

        4    12

           8

MATHEMATICA

Table[(4n^3-6n^2+8n+3)/3, {n, 0, 80}] (* Harvey P. Dale, Apr 13 2011 *)

PROG

(PARI) a(n)=(4*n^3-6*n^2+8*n)/3+1 \\ Charles R Greathouse IV, Jul 16, 2011

(MAGMA) [(4*n^3 - 6*n^2 + 8*n + 3)/3: n in [0..40]]; // Vincenzo Librandi, Jul 17 2011

CROSSREFS

Sequence in context: A201202 A260938 A274626 * A280466 A137368 A191007

Adjacent sequences:  A161709 A161710 A161711 * A161713 A161714 A161715

KEYWORD

nonn,easy

AUTHOR

Reinhard Zumkeller, Jun 17 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 22:42 EDT 2018. Contains 315270 sequences. (Running on oeis4.)