login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A161712 a(n) = (4*n^3 - 6*n^2 + 8*n + 3)/3. 17
1, 3, 9, 27, 65, 131, 233, 379, 577, 835, 1161, 1563, 2049, 2627, 3305, 4091, 4993, 6019, 7177, 8475, 9921, 11523, 13289, 15227, 17345, 19651, 22153, 24859, 27777, 30915, 34281, 37883, 41729, 45827, 50185, 54811, 59713, 64899, 70377, 76155 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

{a(k): 0 <= k < 4} = divisors of 27:

a(n) = A027750(A006218(26) + k + 1), 0 <= k < A000005(27).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..10000

R. Zumkeller, Enumerations of Divisors

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

a(n) = C(n,0) + 2*C(n,1) + 4*C(n,2) + 8*C(n,3).

G.f.: ((x+1)(1+x(5x-2)))/(x-1)^4. - Harvey P. Dale, Apr 13 2011

E.g.f.: (1/3)*(4*x^3 + 6*x^2 + 6*x + 3)*exp(x). - G. C. Greubel, Jul 16 2017

EXAMPLE

Differences of divisors of 27 to compute the coefficients of their interpolating polynomial, see formula:

  1     3     9    27

     2     6    18

        4    12

           8

MATHEMATICA

Table[(4n^3-6n^2+8n+3)/3, {n, 0, 80}] (* Harvey P. Dale, Apr 13 2011 *)

PROG

(PARI) a(n)=(4*n^3-6*n^2+8*n)/3+1 \\ Charles R Greathouse IV, Jul 16, 2011

(MAGMA) [(4*n^3 - 6*n^2 + 8*n + 3)/3: n in [0..40]]; // Vincenzo Librandi, Jul 17 2011

CROSSREFS

Sequence in context: A201202 A260938 A274626 * A280466 A137368 A191007

Adjacent sequences:  A161709 A161710 A161711 * A161713 A161714 A161715

KEYWORD

nonn,easy

AUTHOR

Reinhard Zumkeller, Jun 17 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 18 22:09 EDT 2017. Contains 290768 sequences.