login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A004490 Colossally abundant numbers: n for which there is a positive exponent epsilon such that sigma(n)/n^{1 + epsilon} >= sigma(k)/k^{1 + epsilon} for all k > 1, so that n attains the maximum value of sigma(n)/n^{1 + epsilon}. 26
2, 6, 12, 60, 120, 360, 2520, 5040, 55440, 720720, 1441440, 4324320, 21621600, 367567200, 6983776800, 160626866400, 321253732800, 9316358251200, 288807105787200, 2021649740510400, 6064949221531200, 224403121196654400 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

S. Ramanujan, Highly composite numbers, Proc. London Math. Soc., 14 (1915), 347-407. Reprinted in Collected Papers, Ed. G. H. Hardy et al., Cambridge 1927; Chelsea, NY, 1962, pp. 78-129. See esp. pp. 87, 115.

LINKS

T. D. Noe, Table of n, a(n) for n = 1..150

L. Alaoglu and P. Erdős, On highly composite and similar numbers, Trans. Amer. Math. Soc., 56 (1944), 448-469. Errata

G. Caveney, J.-L. Nicolas and J. Sondow, On SA, CA, and GA numbers, Ramanujan J., 29 (2012), 359-384.

Keith Briggs, Abundant numbers and the Riemann Hypothesis, Experimental Math., Vol. 16 (2006), p. 251-256.

G. Caveney, J.-L. Nicolas and J. Sondow, On SA, CA, and GA numbers, arXiv preprint arXiv:1112.6010 [math.NT], 2011. - From N. J. A. Sloane, Apr 14 2012

J. C. Lagarias, An elementary problem equivalent to the Riemann hypothesis, Am. Math. Monthly 109 (#6, 2002), 534-543.

S. Nazardonyavi, S. Yakubovich, Extremely Abundant Numbers and the Riemann Hypothesis, Journal of Integer Sequences, 17 (2014), Article 14.2.8.

S. Ramanujan, Highly composite numbers, Annotated and with a foreword by J.-L. Nicolas and G. Robin, Ramanujan J., 1 (1997), 119-153.

T. Schwabhäuser, Preventing Exceptions to Robin's Inequality, arXiv preprint arXiv:1308.3678 [math.NT], 2013.

M. Waldschmidt, From highly composite numbers to transcendental number theory, 2013.

Eric Weisstein's World of Mathematics, Colossally Abundant Number

CROSSREFS

A subset of A004394. Cf. A002201.

Cf. A073751.

Cf. abundant numbers = A002093, A002182, A005101, A006038, A004394; highly abundant numbers = A002093, superabundant numbers = A004394, superabundant numbers that are not colossally abundant = A189228.

Sequence in context: A265125 A002201 A263572 * A224078 A135060 A185021

Adjacent sequences:  A004487 A004488 A004489 * A004491 A004492 A004493

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jan 22 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 18:47 EST 2016. Contains 278745 sequences.