OFFSET
1,1
COMMENTS
Numbers that are not triangular (nontriangular numbers).
Also definable as follows: a(1)=2; for n>1, a(n) is smallest integer greater than a(n-1) such that the condition "n and a(a(n)) have opposite parities" can always be satisfied. - Benoit Cloitre and Matthew Vandermast, Mar 10 2003
Record values in A256188 that are greater than 1. - Reinhard Zumkeller, Mar 26 2015
From Daniel Forgues, Apr 10 2015: (Start)
With n >= 1, k >= 1:
t(n+k) - k, 1 <= k <= n+k-1, n >= 1;
t(n+k-1) + n, 1 <= n <= n+k-1, k >= 1;
where t(n+k) = t(n+k-1) + (n+k) is the (n+k)-th triangular number, while the number of compositions of n+k into 2 parts is C(n+k-1, 2-1) = n+k-1, the number of nontriangular numbers between t(n+k-1) and t(n+k), just right!
Related to Hilbert's Infinite Hotel:
0) All rooms, numbered through the positive integers, are full;
1) An infinite number of trains, each containing an infinite number of passengers, arrives: i.e., a 2-D lattice of pairs of positive integers;
2) Move occupant of room m, m >= 1, to room t(m) = m*(m+1)/2, where t(m) is the m-th triangular number;
3) Assign n-th passenger from k-th train to room t(n+k-1) + n, 1 <= n <= n+k-1, k >= 1;
4) Everybody has his or her own room, no room is empty, for m >= 1.
If situation 1 happens again, repeat steps 2 and 3, you're back to 4.
(End)
1711 + 2*a(n)*(58 + a(n)) is prime for n<=21. The terms that do not have this property start 29,32,34,43,47,58,59,60,62,63,65,68,70,73,... - Benedict W. J. Irwin, Nov 22 2016
Also numbers k with the property that in the symmetric representation of sigma(k) both Dyck paths have a central peak or both Dyck paths have a central valley. (Cf. A237593.) - Omar E. Pol, Aug 28 2018
LINKS
T. D. Noe, Table of n, a(n) for n = 1..1000
Benoit Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence, J. Integer Seqs., Vol. 6 (2003), #03.2.2.
Benoit Cloitre, N. J. A. Sloane and M. J. Vandermast, Numerical analogues of Aronson's sequence arXiv:math/0305308 [math.NT], 2003.
Bakir Farhi, An explicit formula generating the non-Fibonacci numbers, arXiv:1105.1127 [math.NT], May 05 2011. See Example 5 p. 456.
J. Lambek and L. Moser, Inverse and complementary sequences of natural numbers, Amer. Math. Monthly, 61 (1954), 454-458.
Cristinel Mortici, Remarks on Complementary Sequences, Fibonacci Quart. 48 (2010), no. 4, 343-347.
Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
FORMULA
a(n) = n + round(sqrt(2*n)).
a(a(n)) = n + 2*floor(1/2 + sqrt(2n)) + 1.
a(n) = a(n-1) + A035214(n), a(1)=2.
a(n) = A080036(n) - 1.
a(n) = n + A002024(n). - Vincenzo Librandi, Jul 08 2010
A010054(a(n)) = 0. - Reinhard Zumkeller, Dec 10 2012
From Boris Putievskiy, Jan 14 2013: (Start)
a(n) = A007401(n)+1.
a(n) = ((t+2)^2 + i - j)/2, where
i = n-t*(t+1)/2,
j = (t*t+3*t+4)/2-n,
t = floor((-1+sqrt(8*n-7))/2). (End)
A248952(a(n)) < 0. - Reinhard Zumkeller, Oct 20 2014
From Robert Israel, Apr 20 2015 (Start):
a(n) = A118011(n) - n.
G.f.: x/(1-x)^2 + x/(1-x) * Sum(j>=0, x^(j*(j+1)/2)) = x/(1-x)^2 + x^(7/8)/(2-2*x) * Theta2(0,sqrt(x)), where Theta2 is a Jacobi theta function. (End)
G.f. as array: x*y*(2 - 2*y + x^2*y + y^2 - x*(1 + y))/((1 - x)^3*(1 - y)^3). - Stefano Spezia, Apr 22 2024
EXAMPLE
From Boris Putievskiy, Jan 14 2013: (Start)
Start of the sequence as a table (read by antidiagonals, right to left), where the k-th row corresponds to the k-th column of the triangle (shown thereafter):
2, 4, 7, 11, 16, 22, 29, ...
5, 8, 12, 17, 23, 30, 38, ...
9, 13, 18, 24, 31, 39, 48, ...
14, 19, 25, 32, 40, 49, 59, ...
20, 26, 33, 41, 50, 60, 71, ...
27, 34, 42, 51, 61, 72, 84, ...
35, 43, 52, 62, 73, 85, 98, ...
(...)
Start of the sequence as a triangle (read by rows), where the i elements of the i-th row are t(i) + 1 up to t(i+1) - 1, i >= 1:
2;
4, 5;
7, 8, 9;
11, 12, 13, 14;
16, 17, 18, 19, 20;
22, 23, 24, 25, 26, 27;
29, 30, 31, 32, 33, 34, 35;
(...)
Row number i contains i numbers, where t(i) = i*(i+1)/2:
t(i) + 1, t(i) + 2, ..., t(i) + i = t(i+1) - 1
(End) [Edited by Daniel Forgues, Apr 11 2015]
MATHEMATICA
f[n_] := n + Round[Sqrt[2n]]; Array[f, 71] (* or *)
Complement[ Range[83], Array[ #(# + 1)/2 &, 13]] (* Robert G. Wilson v, Oct 21 2005 *)
DeleteCases[Range[80], _?(OddQ[Sqrt[8#+1]]&)] (* Harvey P. Dale, Jul 24 2021 *)
PROG
(PARI) a(n)=if(n<1, 0, n+(sqrtint(8*n-7)+1)\2)
(PARI) isok(n) = !ispolygonal(n, 3); \\ Michel Marcus, Mar 01 2016
(Magma) IsTriangular:=func< n | exists{ k: k in [1..Isqrt(2*n)] | n eq (k*(k+1) div 2)} >; [ n: n in [1..90] | not IsTriangular(n) ]; // Klaus Brockhaus, Jan 04 2011
(Haskell)
a014132 n = n + round (sqrt $ 2 * fromInteger n)
a014132_list = filter ((== 0) . a010054) [0..]
-- Reinhard Zumkeller, Dec 12 2012
(Python)
from math import isqrt
def A014132(n): return n+(isqrt((n<<3)-7)+1>>1) # Chai Wah Wu, Jun 17 2024
CROSSREFS
Cf. A000217, A006002, A035214, A080036, A002024, A007401, A003057, A114327, A002260, A004736, A118011, A237593.
Cf. A000124 (left edge: quasi-triangular numbers), A000096 (right edge: almost-triangular numbers), A006002 (row sums), A001105 (central terms).
Cf. A242401 (subsequence).
Cf. A145397 (the non-tetrahedral numbers).
KEYWORD
AUTHOR
EXTENSIONS
Following Alford Arnold's comment: keyword tabl and correspondent crossrefs added by Reinhard Zumkeller, Dec 12 2012
I restored the original definition. - N. J. A. Sloane, Jan 27 2019
STATUS
approved