This site is supported by donations to The OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003057 n appears n - 1 times. 32
 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS The PARI functions t1, t2 can be used to read a triangular array T(n,k) (n >= 2, 1 <= k <= n - 1) by rows from left to right: n -> T(t1(n), t2(n)). - Michael Somos, Aug 23 2002 Smallest integer such that n <= C(a(n),2). - Frank Ruskey, Nov 06 2007 a(n) = inverse (frequency distribution) sequence of A161680. - Jaroslav Krizek, Jun 19 2009 Taken as a triangle t(n, m) with offset 1, i.e., n >= m >= 1, this gives all positive integer limits r = r (a = m, b = A063929(n, m)) of the (a,b)-Fibonacci ratio F(a,b;k+1)/F(a,b;k) for k -> infinity. See the Jan 11 2015 comment on A063929. - Wolfdieter Lang, Jan 12 2015 Square array, T(n,k) = n + k + 2, n > = 0 and k >= 0, read by antidiagonals. Northwest corner:   2, 3, 4, 5, ...   3, 4, 5, 6, ...   4, 5, 6, 7, ...   5, 6, 7, 8, ...   ... - Franck Maminirina Ramaharo, Nov 21 2018 LINKS Vincenzo Librandi, Table of n, a(n) for n = 2..10000 FORMULA a(n) = A002260(n) + A004736(n). a(n) = A002024(n-1) + 1 = floor(sqrt(2*(n - 1)) + 1/2) + 1 = round(sqrt(2*(n - 1))) + 1. - Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 21 2003 a(n) = ceiling((sqrt(8*n - 7) + 1)/2). - Reinhard Zumkeller, Aug 28 2001, modified by Frank Ruskey, Nov 06 2007, restored by M. F. Hasler, Jan 13 2015 a(n) = A080036(n-1) - (n - 1) for n >= 2. - Jaroslav Krizek, Jun 19 2009 G.f.: (2*x^2 + Sum_{n>=2} x^(n*(n - 1)/2 + 2))/(1 - x) = (x^2 + x^(15/8)*theta_2(0,sqrt(x))/2)/(1 - x) where theta_2 is the second Jacobi theta function. - Robert Israel, Jan 12 2015 EXAMPLE (a,b)-Fibonacci ratio limits r(a,b) (see a comment above): as a triangle with offset 1 one has t(3, m) = 4 for m = 1, 2, 3. This gives the limits r(a = m,b = A063929(3, m)), i.e., r(1,12) = r(2,8) = r(3,4) = 4 (and the limit 4 appears only for these three (a,b) values). - Wolfdieter Lang, Jan 12 2015 MAPLE seq(n\$(n-1), n=2..15); # Robert Israel, Jan 12 2015 MATHEMATICA Flatten[Table[PadRight[{}, n-1, n], {n, 15}]] (* Harvey P. Dale, Feb 26 2012 *) PROG (PARI) t1(n)=floor(3/2+sqrt(2*n-2)) /* A003057 */ (PARI) t2(n)=n-1-binomial(floor(1/2+sqrt(2*n-2)), 2) /* A002260(n-2) */ (MAGMA) [Round(Sqrt(2*(n-1)))+1: n in [2..60]]; // Vincenzo Librandi, Jun 23 2011 CROSSREFS Cf. A002024, A002260. Sequence in context: A221671 A301640 A061420 * A239308 A216256 A046693 Adjacent sequences:  A003054 A003055 A003056 * A003058 A003059 A003060 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Apr 21 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 19 23:02 EDT 2019. Contains 321343 sequences. (Running on oeis4.)