login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007401 Add n-1 to n-th term of `n appears n times' sequence (A002024).
(Formerly M2316)
7
1, 3, 4, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Complement of A000096 = increasing sequence of positive integers excluding n*(n+3)/2. - Jonathan Vos Post, Aug 13 2005

As a triangle: (1; 3,4; 6,7,8; 10,11,12,13;...), Row sums = A127736: (1, 7, 21, 46, 85, 141, 217,...) - Gary W. Adamson, Oct 25 2007

Odd primes are a subsequence except 5, cf. A004139. [Reinhard Zumkeller, Jul 18 2011]

A023532(a(n)) = 1. - Reinhard Zumkeller, Dec 04 2012

T(n,k)=((n+k)^2+n-k)/2 -1, n, k >0, read by antidiagonals.  - Boris Putievskiy, Jan 14 2013

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO].

FORMULA

From Boris Putievskiy, Jan 14 2013: (Start)

a(n) = A014132(n)-1.

a(n) = A003057(n)^2 - A114327(n) -1.

a(n) = ((t+2)^2 + i - j)/2-1, where

i = n-t*(t+1)/2,

j = (t*t+3*t+4)/2-n,

t = floor((-1+sqrt(8*n-7))/2). (End)

EXAMPLE

From Boris Putievskiy, Jan 14 2013: (Start)

The start of the sequence as table:

1....3...6..10..15..21..28...

4....7..11..16..22..29..37...

8...12..17..23..30..38..47...

13..18..24..31..39..48..58...

19..25..32..40..49..59..70...

26..33..41..50..60..71..83...

34..42..51..61..72..84..97...

. . .

The start of the sequence as triangle array read by rows:

1;

3,4;

6,7,8;

10,11,12,13;

15,16,17,18,19;

21,22,23,24,25,26;

28,29,30,31,32,33,34;

. . .

Row number r contains r numbers r*(r+1)/2,r*(r+1)/2+1,...,r*(r+1)/2+r-1 (End)

MATHEMATICA

f[n_] := n + Floor[ Sqrt[2n] - 1/2]; Array[f, 66]; (* Robert G. Wilson v, Feb 13 2011 *)

PROG

(PARI) a(n)=n+floor(sqrt(n+n)-1/2) \\ Charles R Greathouse IV, Feb 13 2011

(PARI) for(m=1, 9, for(n=m*(m+1)/2, (m^2+3*m-2)/2, print1(n", "))) \\ Charles R Greathouse IV, Feb 13 2011

(Haskell)

import Data.List (elemIndices)

a007401 n = a007401_list !! n

a007401_list = elemIndices 1 a023532_list

-- Reinhard Zumkeller, Dec 04 2012

CROSSREFS

Cf. A002024, A000096, A127736, A014132, A002260, 004736, A003057, A114327.

Sequence in context: A179872 A075747 A143344 * A234349 A042954 A247987

Adjacent sequences:  A007398 A007399 A007400 * A007402 A007403 A007404

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane, Mira Bernstein

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 25 05:25 EDT 2014. Contains 248518 sequences.