OFFSET
1,2
COMMENTS
Row sums of A127735.
Row sums of A162610. - Reinhard Zumkeller, Jan 19 2013
For n > 0, a(n) is the number of compositions of n+10 into n parts avoiding parts 2 and 3. - Milan Janjic, Jan 07 2016
Sum of the numbers in the top row and last column of an n X n square array whose elements are the numbers from 1..n^2, listed in increasing order by rows (see example). - Wesley Ivan Hurt, May 18 2021
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
Row sums of triangle A131416. Also, binomial transform of [1, 6, 8, 3, 0, 0, 0, ...). - Gary W. Adamson, Oct 23 2007
From Colin Barker, Mar 12 2014: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
G.f.: -x*(x^2-3*x-1) / (x-1)^4. (End)
a(n) = A057145(n+5,n). - R. J. Mathar, Jul 28 2016
EXAMPLE
From Wesley Ivan Hurt, May 18 2021: (Start)
Add all the numbers in the top row and last column.
[1 2 3 4 5]
[1 2 3 4] [6 7 8 9 10]
[1 2 3] [5 6 7 8] [11 12 13 14 15]
[1 2] [4 5 6] [9 10 11 12] [16 17 18 19 20]
[1] [3 4] [7 8 9] [13 14 15 16] [21 22 23 24 25]
------------------------------------------------------------------------
n 1 2 3 4 5
------------------------------------------------------------------------
a(n) 1 7 21 46 85
------------------------------------------------------------------------
(End)
MAPLE
MATHEMATICA
Table[n*(n^2 + 2*n - 1)/2, {n, 60}] (* Vladimir Joseph Stephan Orlovsky, Jun 24 2011 *)
CoefficientList[Series[-(x^2 - 3 x - 1)/(x - 1)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Mar 14 2014 *)
LinearRecurrence[{4, -6, 4, -1}, {1, 7, 21, 46}, 60] (* Harvey P. Dale, Apr 22 2014 *)
PROG
(PARI) Vec(-x*(x^2-3*x-1)/(x-1)^4 + O(x^100)) \\ Colin Barker, Mar 12 2014
(PARI) a(n) = n*(n^2+2*n-1)/2; \\ Altug Alkan, Jan 07 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Gary W. Adamson, Jan 26 2007
EXTENSIONS
More terms and new name from R. J. Mathar, Jul 21 2009
STATUS
approved