login
A145397
Numbers not of the form m*(m+1)*(m+2)/6, the non-tetrahedral numbers.
7
2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78
OFFSET
1,1
COMMENTS
Complement of A000292; A000040 is a subsequence.
LINKS
Cristinel Mortici, Remarks on Complementary Sequences, Fibonacci Quart. 48 (2010), no. 4, 343-347.
FORMULA
A014306(a(n)) = 1; A023533(a(n)) = 0.
a(n) = n+m if 6(n+m)>m(m+1)(m+2) and a(n)=n+m-1 otherwise where m is floor((6n)^(1/3)). - Chai Wah Wu, Oct 01 2024
MATHEMATICA
Select[Range[100], Binomial[Floor[Surd[6*# -1, 3]] +2, 3] != # &] (* G. C. Greubel, Feb 20 2022 *)
PROG
(PARI) is(n)=binomial(sqrtnint(6*n, 3)+2, 3)!=n \\ Charles R Greathouse IV, Feb 22 2017
(Magma) [n: n in [1..100] | Binomial(Floor((6*n-1)^(1/3))+2, 3) ne n ]; // G. C. Greubel, Feb 20 2022
(Sage) [n for n in (1..100) if binomial( floor( real_nth_root(6*n-1, 3) ) +2, 3) != n ] # G. C. Greubel, Feb 20 2022
(Python)
from itertools import count
from math import comb
from sympy import integer_nthroot
def A145397(n):
def f(x): return n+next(i for i in count(integer_nthroot(6*x, 3)[0], -1) if comb(i+2, 3)<=x)
def iterfun(f, n=0):
m, k = n, f(n)
while m != k: m, k = k, f(k)
return m
return iterfun(f, n) # Chai Wah Wu, Sep 09 2024
(Python)
from math import comb
from sympy import integer_nthroot
def A145397(n): return n+(m:=integer_nthroot(6*n, 3)[0])-(n+m<=comb(m+2, 3)) # Chai Wah Wu, Oct 01 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Oct 14 2008
EXTENSIONS
Definition corrected by Ant King, Sep 20 2012
STATUS
approved