This site is supported by donations to The OEIS Foundation.

Index of Factorization Sequences

From OeisWiki
Jump to: navigation, search

In the following table "lpf" denotes least prime factor, "gpf" greatest prime factor, and prime and semiprime are the index of such terms, not the terms themselves. Except parentheses indicate the sequence are the values themselves, rather than the indexes. A grey cell indicates the result is trivial, purple that insufficient terms exist (or are known) for a sequence to be constructed, and brown that it is not certain if the sequences are the same.

  sequence prime semiprime lpf gpf ω Ω d σ φ
Integers A000027 A000040 A001358 A020639 A006530 A001221 A001222 A000005 A000203 A000010
2^n-1 A000225 A000043 A085724 A049479 A005420 A046800 A046051 A046801 A075708 A053287
2^n+1 A000051 (A092506) A092559 A002586 A002587 A046799 A054992 A046798 A069061 A053285
3^n-1 A024023 {1} A028491 A007395 A074477 A133801 A057958 A366575 A366576 A295500
3^n+1 A034472 {0} A171381 A007395 A074476 A366580 A057941 A366577 A366578 A366579
4^n-1 A024036 {1} {2} A122533 A274906 A366604 A057957 A366602 A366603 A295501
4^n+1 A052539 (A290200) A366648 A366609 A274903 A366605 A057940 A366606 A366607 A366608
5^n-1 A024049 {} {1} A007395 A074479 A366611 A057956 A366612 A366613 A295502
5^n+1 A034474 {0} {1,2,4} A007395 A074478 A366615 A057939 A366616 A366617 A366618
6^n-1 A024062 {1} A004062 A010716 A274907 A366620 A057955 A366621 A366622 A366623
6^n+1 A062394 {0,1,2,4} A366582 A366670 A274904 A366627 A057938 A366628 A366629 A366630
7^n-1 A024075 {} {1} A007395 A074249 A366632 A057954 A366633 A366634 A366635
7^n+1 A034491 {0} {4} A007395 A227575 A366636 A057937 A366637 A366638 A366639
8^n-1 A024088 {1} {3} A010705 A274908 A366651 A057953 A366652 A366653 A366654
8^n+1 A062395 {0} {1,2,4} A366671 A274905 A366655 A057936 A366656 A366657 A366658
9^n-1 A024101 {} {} A007395 A274909 A366660 A057952 A366661 A366662 A366663
9^n+1 A062396 {0} {1,2,8,16,32} A007395 A002592 A366664 A057935 A366665 A366666 A366667
10^n-1 A002283 {} {1} A010701 A005422 A102347 A057951 A070528 A102146 A295503
10^n+1 A062397 {0,1,2} A309358 A038371 A003021 A119704 A057934 A344897 A366668 A366669
11^n-1 A024127 {} {1} A007395 A274910 A366681 A366682 A366683 A366684 A366685
11^n+1 A034524 {0} {2,4} A007395 A062308 A366686 A366687 A366688 A366689 A366690
12^n-1 A024140 {1} A004064 A366717 A366718 A366707 A366708 A366709 A366710 A366711
12^n+1 A178248 {0,1} A366702 A366719 A366720 A366712 A366713 A366714 A366715 A366716
Fibonacci A000045 A001605 A072381 A060383 A060385 A022307 A038575 A063375 A063477 A065449
Lucas A000032 A001606 A085726 A280104 A079451 A086598 A086599 A272377 A272439 A197218
Pell A000129 A096650 A250292 A364820 A264137 A364818 A363833 A363831 A363829 A272040
Jacobsthal A001045 A107036 A363837 A286567 A271314 A366769 A366770 A366771 A366772 A366773
Tribonacci A000073 A231575 A101757 A366583 A366584 A366780 A366781 A366782 A366783 A107647
n! A000142 {2} {3} A007395 A007917 A000720 A022559 A027423 A062569 A048855
n!-1 A033312 A002982 A078781 A054415 A002582 A066877 A054991 A064145 A366757 A366759
n!+1 A038507 A002981 A078778 A051301 A002583 A066856 A054990 A064144 A366758 A366760
p# A002110 {2} {3} A007395 A000040 A000027 A000027 A000079 A054640 A005867
p#-1 (Kummer) A057588 A057704 A364840 A057713 A002584 A054989 A054989 A366808 A366809 A366810
p#+1 (Euclid) A006862 A018239 A085725 A051342 A002585 A054988 A054988 A366811 A366812 A171989
n^n A000312 {} {2} A020639 A006530 A001221 A066959 A062319 A062727 A064447
n^n-1 A048861 {2} {3} A116895 A006486 A344870 A309941 A334167 A366819 A366821
n^n+1 (Sierpiński) A014566 (A121270) {16} A055385 A007571 A344869 A085723 A344859 A366820 A366822
n^n-n A061190 {2} {} A007395 A372229 A372599 A377675 A377676 A377677 A377678
n^n+n A066068 {1} {2} A007395 A372228 A372546 A377671 A377672 A377673 A377674
n*2^n-1 (Woodall) A003261 A002234 A242273 A367002 A367003 A367006 A366899 A366898 A063515 A056821
n*2^n+1 (Cullen) A002064 A005849 A242175 A367004 A367005 A367007 A367008 A367009 A367010 A056820
Partitions A000041 A046063 A065729 A087173 A071963 A087175 A085561 A085543 A139041 A366581
Sylvester A000058 (A014546) {4} A323605 A367020 A091335 A091335 A367130 A367131 A367132
Champernowne A007908 (A176942) A046461 A075019 A075022 A116505 A046460 A110756 A366954 A366955