|
|
A116895
|
|
Least prime factor of n^n-1.
|
|
3
|
|
|
3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 13, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 7, 2, 3, 2, 3, 2, 5, 2, 3, 2, 3, 2, 7, 2
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
2,1
|
|
COMMENTS
|
If n is odd then a(n)=2; also, if n is even and not divisible by 3 then a(n)=3. - Zak Seidov, Mar 03 2006
|
|
LINKS
|
Antti Karttunen, Table of n, a(n) for n = 2..16384
|
|
EXAMPLE
|
6^6-1=5*7*31*43, so a(6)=5.
|
|
MATHEMATICA
|
Table[FactorInteger[GCD[n^n-1, 200! ]][[1, 1]], {n, 2, 130}]
|
|
PROG
|
(PARI) A116895(n) = { my(k=(n^n)-1); forprime(p=2, , if(!(k%p), return(p))); }; \\ Antti Karttunen, Dec 19 2018
|
|
CROSSREFS
|
Cf. A006486, A007571, A048861.
Sequence in context: A066919 A268714 A084117 * A134267 A249800 A165258
Adjacent sequences: A116892 A116893 A116894 * A116896 A116897 A116898
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Giovanni Resta, Mar 02 2006
|
|
STATUS
|
approved
|
|
|
|