|
|
A116892
|
|
Values of gcd(k!+1, k^k+1), when greater than 1.
|
|
4
|
|
|
2, 7, 47, 79, 103, 127, 191, 199, 263, 367, 383, 431, 479, 503, 599, 607, 631, 727, 743, 823, 839, 863, 887, 991, 1087, 1151, 1319, 1367, 1423, 1487, 1511, 1583, 1663, 1783, 1823, 1871, 1951, 2039, 2063, 2111, 2143, 2287, 2311, 2383, 2423, 2447, 2503, 2551
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Apart from the initial term (2) and few exceptional values (A116894) this sequence seems to coincide with A067658. The values of k for which the terms of this sequence are obtained are in A116893.
|
|
LINKS
|
Antti Karttunen, Table of n, a(n) for n = 1..1832
|
|
EXAMPLE
|
gcd(1!+1,1^1+1) = 2 gives the first term;
gcd(3!+1,3^3+1) = gcd(7,28) = 7 gives the second, and so on.
|
|
MATHEMATICA
|
f[n_] := GCD[n! + 1, n^n + 1]; t = Array[f, 1295]; Rest@ Union@ t (* Robert G. Wilson v, Mar 09 2006 *)
|
|
PROG
|
(PARI) lista(nn) = for (n=1, nn, if ((g=gcd(n! + 1, n^n + 1)) != 1, print1(g, ", "))); \\ Michel Marcus, Jul 22 2018
|
|
CROSSREFS
|
Cf. A014566, A038507, A067658, A116891, A116893, A116894.
Sequence in context: A247883 A027458 A062632 * A201481 A054555 A072287
Adjacent sequences: A116889 A116890 A116891 * A116893 A116894 A116895
|
|
KEYWORD
|
easy,nonn,changed
|
|
AUTHOR
|
Giovanni Resta, Mar 01 2006
|
|
EXTENSIONS
|
Entries checked by Robert G. Wilson v, Mar 09 2006
|
|
STATUS
|
approved
|
|
|
|