OFFSET
2,2
COMMENTS
The initial term a(2)=1 is not a prime, but it does not affect search results and may prevent submission of duplicates. - M. F. Hasler, Oct 31 2012
LINKS
Chai Wah Wu, Table of n, a(n) for n = 2..153 (n = 2..135 from Amiram Eldar)
P. Erdős and C. L. Stewart, On the greatest and least prime factors of n! + 1, J. London Math. Soc. (2) 13:3 (1976), pp. 513-519.
M. Kraitchik, On the divisibility of factorials, Scripta Math., 14 (1948), 24-26 (but beware errors). [Annotated scanned copy]
Hisanori Mishima, Factorizations of many number sequences: n! - 1 (n = 1 to 100); Primorials - 1.
R. G. Wilson v, Explicit factorizations
FORMULA
Erdős & Stewart show that a(n) > n + (l-o(l))log n/log log n except when n+1 is prime, and that a(n) > n + e(n)sqrt(n) for almost all n where e(n) is any function with lim e(n) = 0. - Charles R Greathouse IV, Dec 05 2012
EXAMPLE
a(3)=5 because 3!-1=5 which is prime; a(5)=7 because 5!-1=119=7*17 and 7<17
MATHEMATICA
Do[ Print[ FactorInteger[ n! - 1, FactorComplete -> True][ [1, 1] ] ], {n, 3, 32} ]
PROG
(PARI) A054415(n)=if(n>2, factor(n!-1)[1, 1], 1) \\ M. F. Hasler, Oct 31 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Henry Bottomley, May 10 2000
EXTENSIONS
More terms from Robert G. Wilson v, Aug 01 2000
More terms from Amiram Eldar, Oct 07 2019
STATUS
approved