OFFSET
1,2
COMMENTS
The set {a(n)/(2^n-1)} is dense in [1, oo) (Luca, 2003). - Amiram Eldar, Mar 04 2021
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..1206
Paul Erdős, On the sum Sigma_{d|2^n-1} d^{-1}, Israel Journal of Mathematics, Vol. 9. No. 1 (1971), pp. 43-48; alternative link.
Vaclav Kotesovec, Plot of a(n)/((2^n-1)*log(log(n))) for n = 1..1200
Florian Luca, On the sum of divisors of the Mersenne numbers, Mathematica Slovaca, Vol. 53. No. 5 (2003), pp. 457-466.
FORMULA
a(n) = sigma(2^n - 1).
a(n)/(2^n-1) < c * log(log(n)), where c > 0 is a constant (Erdős, 1971). - Amiram Eldar, Mar 04 2021
MATHEMATICA
Table[DivisorSigma[1, 2^n - 1], {n, 1, 40}]
PROG
(PARI) a(n)=sigma(2^n-1) \\ Charles R Greathouse IV, Feb 04 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Joseph L. Pe, Oct 03 2002
STATUS
approved