login
A075708
Sum of the divisors of 2^n - 1.
18
1, 4, 8, 24, 32, 104, 128, 432, 592, 1536, 2160, 8736, 8192, 22528, 38912, 111456, 131072, 473600, 524288, 1999872, 2466048, 5909760, 8567136, 38054016, 34713728, 89522176, 155493536, 462274560, 539922240, 2015330304, 2147483648
OFFSET
1,2
COMMENTS
The set {a(n)/(2^n-1)} is dense in [1, oo) (Luca, 2003). - Amiram Eldar, Mar 04 2021
LINKS
Paul Erdős, On the sum Sigma_{d|2^n-1} d^{-1}, Israel Journal of Mathematics, Vol. 9. No. 1 (1971), pp. 43-48; alternative link.
Florian Luca, On the sum of divisors of the Mersenne numbers, Mathematica Slovaca, Vol. 53. No. 5 (2003), pp. 457-466.
FORMULA
a(n) = sigma(2^n - 1).
a(n) = A000203(A000225(n)). - Omar E. Pol, Dec 08 2019
a(n)/(2^n-1) < c * log(log(n)), where c > 0 is a constant (Erdős, 1971). - Amiram Eldar, Mar 04 2021
MATHEMATICA
Table[DivisorSigma[1, 2^n - 1], {n, 1, 40}]
PROG
(PARI) a(n)=sigma(2^n-1) \\ Charles R Greathouse IV, Feb 04 2013
CROSSREFS
A247938 is a subsequence.
Row sums of A361438.
Sequence in context: A368903 A291548 A212019 * A066617 A272272 A024589
KEYWORD
nonn
AUTHOR
Joseph L. Pe, Oct 03 2002
STATUS
approved