login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of the divisors of 2^n - 1.
18

%I #29 Jul 02 2024 05:02:55

%S 1,4,8,24,32,104,128,432,592,1536,2160,8736,8192,22528,38912,111456,

%T 131072,473600,524288,1999872,2466048,5909760,8567136,38054016,

%U 34713728,89522176,155493536,462274560,539922240,2015330304,2147483648

%N Sum of the divisors of 2^n - 1.

%C The set {a(n)/(2^n-1)} is dense in [1, oo) (Luca, 2003). - _Amiram Eldar_, Mar 04 2021

%H Amiram Eldar, <a href="/A075708/b075708.txt">Table of n, a(n) for n = 1..1206</a>

%H Paul Erdős, <a href="https://doi.org/10.1007/BF02771618">On the sum Sigma_{d|2^n-1} d^{-1}</a>, Israel Journal of Mathematics, Vol. 9. No. 1 (1971), pp. 43-48; <a href="https://users.renyi.hu/~p_erdos/1971-14.pdf">alternative link</a>.

%H Vaclav Kotesovec, <a href="/A075708/a075708.jpg">Plot of a(n)/((2^n-1)*log(log(n))) for n = 1..1200</a>

%H Florian Luca, <a href="http://dml.cz/dmlcz/129330">On the sum of divisors of the Mersenne numbers</a>, Mathematica Slovaca, Vol. 53. No. 5 (2003), pp. 457-466.

%F a(n) = sigma(2^n - 1).

%F a(n) = A000203(A000225(n)). - _Omar E. Pol_, Dec 08 2019

%F a(n)/(2^n-1) < c * log(log(n)), where c > 0 is a constant (Erdős, 1971). - _Amiram Eldar_, Mar 04 2021

%t Table[DivisorSigma[1, 2^n - 1], {n, 1, 40}]

%o (PARI) a(n)=sigma(2^n-1) \\ _Charles R Greathouse IV_, Feb 04 2013

%Y Cf. A000203, A000225.

%Y A247938 is a subsequence.

%Y Row sums of A361438.

%K nonn

%O 1,2

%A _Joseph L. Pe_, Oct 03 2002