login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A078778
Numbers n such that n!+1 is a semiprime.
9
4, 5, 6, 7, 8, 10, 13, 14, 19, 20, 24, 25, 26, 28, 34, 38, 48, 54, 55, 59, 71, 75, 92, 109, 114, 115
OFFSET
1,1
COMMENTS
Subsequence of (and likely is equal to) the union of A146968 and A181764. - Max Alekseyev, May 28 2015
Note that the two prime factors of 38!+1 = 523022617466601111760007224100074291200000001 = 14029308060317546154181 * 37280713718589679646221 both have 23 decimal digits. Are there any other terms in this sequence other than 4,5,7 and 38 with this property?
a(27) > 139. - Robert Price, Apr 11 2019
Other terms in this sequence: 392, 551, 601, 770, 772, 878, 1033, 1320, 1831, 2620, 2808, 3752, 4233, 4616, 4984, 7260. - Chai Wah Wu, Feb 28 2020
EXAMPLE
4 is in the sequence because 4!+1=25=5*5 is semiprime. But 9 is not in the sequence because 9!+1=19*71*269 is not semiprime. - Sean A. Irvine, Nov 15 2009
MATHEMATICA
Select[Range[100], Plus@@Last/@FactorInteger[#! + 1]==2 &] (* Vincenzo Librandi, May 26 2015 *)
Select[Range[100], PrimeOmega[#!+1]==2&] (* Harvey P. Dale, Mar 19 2017 *)
PROG
(PARI) { fp(a, b)=local(c, d, r); for(n=a, b, r=n!+1; c=vecmin(factor(r)[, 1]~); d=vecmax(factor(r)[, 1]~); if(bigomega(r)==2 && isprime(c) && isprime(d), print1(n" "); )) } fp(1, 100)
(Magma) IsSemiprime:=func< n | &+[ k[2]: k in Factorization(n) ] eq 2 >; [n: n in [1..60] | IsSemiprime(Factorial(n)+1)]; // Vincenzo Librandi, May 26 2015
CROSSREFS
KEYWORD
more,nonn
AUTHOR
Jason Earls, Jan 09 2003
EXTENSIONS
Term 109 from Sean A. Irvine, Nov 15 2009
Term 114 (factored by Womack et al.) from Sean A. Irvine, May 25 2015
Term 115 (factored by Womack et al.) from Sean A. Irvine, Feb 08 2016
STATUS
approved