login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: seq:1,1,1,1,2,1,1,2,3,1
Displaying 1-10 of 76 results found. page 1 2 3 4 5 6 7 8
     Sort: relevance | references | number | modified | created      Format: long | short | data
A027751 Irregular triangle read by rows in which row n lists the proper divisors of n (those divisors of n which are < n), with the first row {1} by convention. +30
59
1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 1, 3, 1, 2, 5, 1, 1, 2, 3, 4, 6, 1, 1, 2, 7, 1, 3, 5, 1, 2, 4, 8, 1, 1, 2, 3, 6, 9, 1, 1, 2, 4, 5, 10, 1, 3, 7, 1, 2, 11, 1, 1, 2, 3, 4, 6, 8, 12, 1, 5, 1, 2, 13, 1, 3, 9, 1, 2, 4, 7, 14, 1, 1, 2, 3, 5, 6, 10, 15, 1, 1, 2, 4, 8, 16, 1, 3, 11, 1, 2, 17, 1, 5, 7, 1, 2, 3, 4, 6, 9, 12, 18 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
Or, take the list 1,2,3,4,... of natural numbers (A000027) and replace each number by its proper divisors.
The row length is 1 for n = 1 and A032741(n) for n >= 2. - Wolfdieter Lang, Jan 16 2016
LINKS
EXAMPLE
The irregular triangle T(n,k) begins:
n\k 1 2 3 4 5 ...
1: 1 (by convention)
2: 1
3: 1
4: 1 2
5: 1
6: 1 2 3
7: 1
8: 1 2 4
9: 1 3
10: 1 2 5
11: 1
12: 1 2 3 4 6
13: 1
14: 1 2 7
15: 1 3 5
16: 1 2 4 8
17: 1
18: 1 2 3 6 9
19: 1
20: 1 2 4 5 10
.... reformatted - Wolfdieter Lang, Jan 16 2016
MAPLE
with(numtheory):
T:= n-> sort([(divisors(n) minus {n})[]])[]: T(1):=1:
seq(T(n), n=1..50); # Alois P. Heinz, Apr 11 2012
MATHEMATICA
Table[ Divisors[n] // Most, {n, 1, 36}] // Flatten // Prepend[#, 1] & (* Jean-François Alcover, Jun 10 2013 *)
PROG
(Haskell)
a027751 n k = a027751_tabf !! (n-1) !! (k-1)
a027751_row n = a027751_tabf !! (n-1)
a027751_tabf = [1] : map init (tail a027750_tabf)
-- Reinhard Zumkeller, Apr 18 2012
(Python)
from sympy import divisors
def a(n): return [1] if n==1 else divisors(n)[:-1]
for n in range(21): print(a(n)) # Indranil Ghosh, Apr 30 2017
(PARI) row(n) = if (n==1, [1], my(d = divisors(n)); vector(#d-1, k, d[k])); \\ Michel Marcus, Apr 30 2017
CROSSREFS
Cf. A027750, A032741 (row lengths), A001065, A000005.
Row sums give A173455. - Omar E. Pol, Nov 23 2010
KEYWORD
nonn,easy,tabf
AUTHOR
EXTENSIONS
More terms from Patrick De Geest, May 15 1998
Example edited by Omar E. Pol, Nov 23 2010
STATUS
approved
A153452 a(1) = 1; if n > 1, then a(n) = Sum_{prime q |n} a(n*q' /q), where q' = prevprime(q) for q>2 and 2' = 1. +30
58
1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 3, 1, 4, 5, 1, 1, 5, 1, 6, 9, 5, 1, 4, 5, 6, 5, 10, 1, 16, 1, 1, 14, 7, 14, 9, 1, 8, 20, 10, 1, 35, 1, 15, 21, 9, 1, 5, 14, 21, 27, 21, 1, 14, 28, 20, 35, 10, 1, 35, 1, 11, 56, 1, 48, 64, 1, 28, 44, 70, 1, 14, 1, 12, 42, 36, 42 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,6
COMMENTS
Original name was: a(1)=1, for n>1, if 2*m = n or (m/p)*nextprime(p) = n, where p is a prime factor of m ( m runs from 1 to n-1 ), then a(n) = Sum_{m} a(m).
The number of standard tableaux of the integer partition with Heinz number n (for the definition of the Heinz number of a partition see the next comment). The proof follows from Lemma 2.8.2 of the Sagan reference. Examples: (i) a(6)=2; indeed 6 = 2*3 is the Heinz number of the partition [1,2] and, obviously, the Ferrers board admits 2 standard tableaux; (ii) a(60)=35; indeed, 60 = 2*2*3*5 is the Heinz number of the partition [1,1,2,3] and the hook-lengths of its Ferrer board are 6,3,1,4,1,2,1; then, the number of standard tableaux is 7!/(6*3*4*2) = 35. - Emeric Deutsch, May 24 2015
The Heinz number of a partition p = [p_1, p_2, ..., p_r] is defined as Product(p_j-th prime, j=1...r) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition; for example, for the partition [1,1,2,4,10] the Heinz number is 2*2*3*7*29 = 2436). - Emeric Deutsch, May 24 2015
REFERENCES
B. E. Sagan, The Symmetric Group, Springer, 2001, New York.
LINKS
EXAMPLE
For n=10; (m=5; 2*5 = 10), (m=6; (6/3)*nextprime(3) = 10), hence a(10) = a(5) + a(6) = 3.
MAPLE
with(numtheory):
a:= proc(n) option remember; `if`(n=1, 1,
add(a(n/q*`if`(q=2, 1, prevprime(q))), q=factorset(n)))
end:
seq(a(n), n=1..100); # Alois P. Heinz, Aug 09 2012
MATHEMATICA
a[n_] := a[n] = If[n == 1, 1, Sum[a[n/q*If[q == 2, 1, NextPrime[q, -1]]], {q, FactorInteger[n][[All, 1]]}]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Oct 04 2016, after Alois P. Heinz *)
CROSSREFS
Cf. A285175.
KEYWORD
easy,nonn
AUTHOR
Naohiro Nomoto, Dec 26 2008
EXTENSIONS
New name from Emeric Deutsch, May 14 2015
STATUS
approved
A004070 Table of Whitney numbers W(n,k) read by antidiagonals, where W(n,k) is maximal number of pieces into which n-space is sliced by k hyperplanes, n >= 0, k >= 0. +30
26
1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 4, 1, 1, 2, 4, 7, 5, 1, 1, 2, 4, 8, 11, 6, 1, 1, 2, 4, 8, 15, 16, 7, 1, 1, 2, 4, 8, 16, 26, 22, 8, 1, 1, 2, 4, 8, 16, 31, 42, 29, 9, 1, 1, 2, 4, 8, 16, 32, 57, 64, 37, 10, 1, 1, 2, 4, 8, 16, 32, 63, 99, 93, 46, 11, 1, 1, 2, 4, 8, 16, 32, 64, 120, 163 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
As a number triangle, this is given by T(n,k)=sum{j=0..n, C(n,j)(-1)^(n-j)sum{i=0..j, C(j+k,i-k)}}. - Paul Barry, Aug 23 2004
As a number triangle, this is the Riordan array (1/(1-x), x(1+x)) with T(n,k)=sum{i=0..n, binomial(k,i-k)}. Diagonal sums are then A023434(n+1). - Paul Barry, Feb 16 2005
Form partial sums across rows of square array of binomial coefficients A026729; see also A008949. - Philippe Deléham, Aug 28 2005
Square array A026729 -> Partial sums across rows
1 0 0 0 0 0 0 . . . . 1 1 1 1 1 1 1 . . . . . .
1 1 0 0 0 0 0 . . . . 1 2 2 2 2 2 2 . . . . . .
1 2 1 0 0 0 0 . . . . 1 3 4 4 4 4 4 . . . . . .
1 3 3 1 0 0 0 . . . . 1 4 7 8 8 8 8 . . . . . .
For other Whitney numbers see A007799.
W(n,k) is the number of length k binary sequences containing no more than n 1's. - Geoffrey Critzer, Mar 15 2010
From Emeric Deutsch, Jun 15 2010: (Start)
Viewed as a number triangle, T(n,k) is the number of internal nodes of the Fibonacci tree of order n+2 at level k. A Fibonacci tree of order n (n>=2) is a complete binary tree whose left subtree is the Fibonacci tree of order n-1 and whose right subtree is the Fibonacci tree of order n-2; each of the Fibonacci trees of order 0 and 1 is defined as a single node.
(End)
Named after the American mathematician Hassler Whitney (1907-1989). - Amiram Eldar, Jun 13 2021
REFERENCES
Donald E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417. [Emeric Deutsch, Jun 15 2010]
LINKS
Gustav Burosch, Hans-Dietrich O.F. Gronau, Jean-Marie Laborde and Ingo Warnke, On posets of m-ary words, Discrete Math., Vol. 152, No. 1-3 (1996), pp. 69-91. MR1388633 (97e:06002)
Matteo Cervetti and Luca Ferrari, Pattern avoidance in the matching pattern poset, arXiv:2009.01024 [math.CO], 2020.
Yasuichi Horibe, An entropy view of Fibonacci trees, Fibonacci Quarterly, Vol. 20, No. 2 (1982), pp. 168-178. [From Emeric Deutsch, Jun 15 2010]
FORMULA
W(n, k) = Sum_{i=0..n} binomial(k, i). - Bill Gosper
W(n, k) = if k=0 or n=0 then 1 else W(n, k-1)+W(n-1, k-1). - David Broadhurst, Jan 05 2000
The table W(n,k) = A000012 * A007318(transform), where A000012 = (1; 1,1; 1,1,1; ...). - Gary W. Adamson, Nov 15 2007
E.g.f. for row n: (1 + x + x^2/2! + ... + x^n/n!)* exp(x). - Geoffrey Critzer, Mar 15 2010
G.f.: 1 / (1 - x - x*y*(1 - x^2)) = Sum_{0 <= k <= n} x^n * y^k * T(n, k). - Michael Somos, May 31 2016
W(n, n) = 2^n. - Michael Somos, May 31 2016
From Jianing Song, May 30 2022: (Start)
T(n, 0) = T(n, n) = 1 for n >= 0; T(n, k) = T(n-1, k-1) + T(n-2, k-1) for k=1, 2, ..., n-1, n >= 2.
T(n, k) = Sum_{m=0..n-k} binomial(k, m).
T(n,k) = 2^k for 0 <= k <= floor(n/2). (End)
EXAMPLE
Table W(n,k) begins:
1 1 1 1 1 1 1 ...
1 2 3 4 5 6 7 ...
1 2 4 7 11 16 22 ...
1 2 4 8 15 26 42 ... - Michael Somos, Apr 28 2000
W(2,4) = 11 because there are 11 length 4 binary sequences containing no more than 2 1's: {0, 0, 0, 0}, {0, 0, 0, 1}, {0, 0, 1, 0}, {0, 0, 1, 1}, {0, 1, 0, 0}, {0, 1, 0, 1}, {0, 1, 1, 0}, {1, 0, 0, 0}, {1, 0, 0, 1}, {1, 0, 1, 0}, {1, 1, 0, 0}. - Geoffrey Critzer, Mar 15 2010
Table T(n, k) begins:
1
1 1
1 2 1
1 2 3 1
1 2 4 4 1
1 2 4 7 5 1
1 2 4 8 11 6 1
... - Michael Somos, May 31 2016
MATHEMATICA
Transpose[ Table[Table[Sum[Binomial[n, k], {k, 0, m}], {m, 0, 15}], {n, 0, 15}]] // Grid (* Geoffrey Critzer, Mar 15 2010 *)
T[ n_, k_] := Sum[ Binomial[n, j] (-1)^(n - j) Sum[ Binomial[j + k, i - k], {i, 0, j}], {j, 0, n}]; (* Michael Somos, May 31 2016 *)
PROG
(PARI) /* array read by antidiagonals up coordinate index functions */
t1(n) = binomial(floor(3/2 + sqrt(2+2*n)), 2) - (n+1); /* A025581 */
t2(n) = n - binomial(floor(1/2 + sqrt(2+2*n)), 2); /* A002262 */
/* define the sequence array function for A004070 */
W(n, k) = sum(i=0, n, binomial(k, i));
/* visual check ( origin 0, 0 ) */
printp(matrix(7, 7, n, k, W(n-1, k-1)));
/* print the sequence entries by antidiagonals going up ( origin 0, 0 ) */
print1("S A004070 "); for(n=0, 32, print1(W(t1(n), t2(n))", "));
print1("T A004070 "); for(n=33, 61, print1(W(t1(n), t2(n))", "));
print1("U A004070 "); for(n=62, 86, print1(W(t1(n), t2(n))", ")); /* Michael Somos, Apr 28 2000 */
(PARI) T(n, k)=sum(m=0, n-k, binomial(k, m)) \\ Jianing Song, May 30 2022
CROSSREFS
Cf. A007799. As a triangle, mirror A052509.
Rows converge to powers of two (A000079). Subdiagonals include A000225, A000295, A002662, A002663, A002664, A035038, A035039, A035040, A035041, A035042. Antidiagonal sums are A000071.
Cf. A178522, A178524. - Emeric Deutsch, Jun 15 2010
KEYWORD
tabl,nonn,easy,nice
AUTHOR
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Mar 20 2000
STATUS
approved
A334997 Array T read by ascending antidiagonals: T(n, k) = Sum_{d divides n} T(d, k-1) with T(n, 0) = 1. +30
25
1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 3, 3, 4, 1, 1, 2, 6, 4, 5, 1, 1, 4, 3, 10, 5, 6, 1, 1, 2, 9, 4, 15, 6, 7, 1, 1, 4, 3, 16, 5, 21, 7, 8, 1, 1, 3, 10, 4, 25, 6, 28, 8, 9, 1, 1, 4, 6, 20, 5, 36, 7, 36, 9, 10, 1, 1, 2, 9, 10, 35, 6, 49, 8, 45, 10, 11, 1, 1, 6, 3, 16, 15, 56, 7, 64, 9, 55, 11, 12, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
T(n, k) is called the generalized divisor function (see Beekman).
As an array with offset n=1, k=0, T(n,k) is the number of length-k chains of divisors of n. For example, the T(4,3) = 10 chains are: 111, 211, 221, 222, 411, 421, 422, 441, 442, 444. - Gus Wiseman, Aug 04 2022
REFERENCES
Richard Beekman, An Introduction to Number-Theoretic Combinatorics, Lulu Press 2017.
LINKS
FORMULA
T(n, k) = Sum_{d divides n} T(d, k-1) with T(n, 0) = 1 (see Theorem 3 in Beekman's article).
T(i*j, k) = T(i, k)*T(j, k) if i and j are coprime positive integers (see Lemma 1 in Beekman's article).
T(p^m, k) = binomial(m+k, k) for every prime p (see Lemma 2 in Beekman's article).
EXAMPLE
From Gus Wiseman, Aug 04 2022: (Start)
Array begins:
k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8
n=1: 1 1 1 1 1 1 1 1 1
n=2: 1 2 3 4 5 6 7 8 9
n=3: 1 2 3 4 5 6 7 8 9
n=4: 1 3 6 10 15 21 28 36 45
n=5: 1 2 3 4 5 6 7 8 9
n=6: 1 4 9 16 25 36 49 64 81
n=7: 1 2 3 4 5 6 7 8 9
n=8: 1 4 10 20 35 56 84 120 165
The T(4,5) = 21 chains:
(1,1,1,1,1) (4,2,1,1,1) (4,4,2,2,2)
(2,1,1,1,1) (4,2,2,1,1) (4,4,4,1,1)
(2,2,1,1,1) (4,2,2,2,1) (4,4,4,2,1)
(2,2,2,1,1) (4,2,2,2,2) (4,4,4,2,2)
(2,2,2,2,1) (4,4,1,1,1) (4,4,4,4,1)
(2,2,2,2,2) (4,4,2,1,1) (4,4,4,4,2)
(4,1,1,1,1) (4,4,2,2,1) (4,4,4,4,4)
The T(6,3) = 16 chains:
(1,1,1) (3,1,1) (6,2,1) (6,6,1)
(2,1,1) (3,3,1) (6,2,2) (6,6,2)
(2,2,1) (3,3,3) (6,3,1) (6,6,3)
(2,2,2) (6,1,1) (6,3,3) (6,6,6)
The triangular form T(n-k,k) gives the number of length k chains of divisors of n - k. It begins:
1
1 1
1 2 1
1 2 3 1
1 3 3 4 1
1 2 6 4 5 1
1 4 3 10 5 6 1
1 2 9 4 15 6 7 1
1 4 3 16 5 21 7 8 1
1 3 10 4 25 6 28 8 9 1
1 4 6 20 5 36 7 36 9 10 1
1 2 9 10 35 6 49 8 45 10 11 1
(End)
MATHEMATICA
T[n_, k_]:=If[n==1, 1, Product[Binomial[Extract[Extract[FactorInteger[n], i], 2]+k, k], {i, 1, Length[FactorInteger[n]]}]]; Table[T[n-k, k], {n, 1, 13}, {k, 0, n-1}]//Flatten
PROG
(PARI) T(n, k) = if (k==0, 1, sumdiv(n, d, T(d, k-1)));
matrix(10, 10, n, k, T(n, k-1)) \\ to see the array for n>=1, k >=0; \\ Michel Marcus, May 20 2020
CROSSREFS
Cf. A000217 (4th row), A000290 (6th row), A000292 (8th row), A000332 (16th row), A000389 (32nd row), A000537 (36th row), A000578 (30th row), A002411 (12th row), A002417 (24th row), A007318, A027800 (48th row), A335078, A335079.
Column k = 2 of the array is A007425.
Column k = 3 of the array is A007426.
Column k = 4 of the array is A061200.
The transpose of the array is A077592.
The subdiagonal n = k + 1 of the array is A163767.
The version counting all multisets of divisors (not just chains) is A343658.
The strict case is A343662 (row sums: A337256).
Diagonal n = k of the array is A343939.
Antidiagonal sums of the array (or row sums of the triangle) are A343940.
A067824(n) counts strict chains of divisors starting with n.
A074206(n) counts strict chains of divisors from n to 1.
A146291 counts divisors by Omega.
A251683(n,k) counts strict length k + 1 chains of divisors from n to 1.
A253249(n) counts nonempty chains of divisors of n.
A334996(n,k) counts strict length k chains of divisors from n to 1.
A337255(n,k) counts strict length k chains of divisors starting with n.
KEYWORD
nonn,tabl,mult
AUTHOR
Stefano Spezia, May 19 2020
EXTENSIONS
Duplicate term removed by Stefano Spezia, Jun 03 2020
STATUS
approved
A048887 Array T read by antidiagonals, where T(m,n) = number of compositions of n into parts <= m. +30
19
1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 5, 1, 1, 2, 4, 7, 8, 1, 1, 2, 4, 8, 13, 13, 1, 1, 2, 4, 8, 15, 24, 21, 1, 1, 2, 4, 8, 16, 29, 44, 34, 1, 1, 2, 4, 8, 16, 31, 56, 81, 55, 1, 1, 2, 4, 8, 16, 32, 61, 108, 149, 89, 1, 1, 2, 4, 8, 16, 32, 63, 120, 208, 274, 144, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
Taking finite differences of array columns from the top down, we obtain (1; 1,1; 1,2,1; 1,4,2,1; ...) = A048004 rows. - Gary W. Adamson, Aug 20 2010
T(m,n) is the number of binary words of length n-1 with < m consecutive 1's. - Geoffrey Critzer, Sep 02 2012
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Princeton University Press, Princeton, NJ, 1978, p. 154.
LINKS
Hsin-Po Wang and Chi-Wei Chin, On Counting Subsequences and Higher-Order Fibonacci Numbers, arXiv:2405.17499 [cs.IT], 2024. See p. 2.
FORMULA
G.f.: (1-z)/[1-2z+z^(t+1)].
EXAMPLE
T(2,5) counts 11111, 1112, 1121, 1211, 2111, 122, 212, 221, where "1211" abbreviates the composition 1+2+1+1.
These eight compositions correspond respectively to: {0,0,0,0}, {0,0,0,1}, {0,0,1,0}, {0,1,0,0}, {1,0,0,0}, {0,1,0,1}, {1,0,0,1}, {1,0,1,0} per the bijection given by N. J. A. Sloane in A048004. - Geoffrey Critzer, Sep 02 2012
The array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 5, 8, 13, ...
1, 2, 4, 7, 13, ...
1, 2, 4, 8, ...
1, 2, 4, ...
1, 2, ...
1, ...
MAPLE
G := t->(1-z)/(1-2*z+z^(t+1)): T := (m, n)->coeff(series(G(m), z=0, 30), z^n): matrix(7, 12, T);
# second Maple program:
T:= proc(m, n) option remember; `if`(n=0 or m=1, 1,
add(T(m, n-j), j=1..min(n, m)))
end:
seq(seq(T(1+d-n, n), n=1..d), d=1..14); # Alois P. Heinz, May 21 2013
MATHEMATICA
Table[nn=10; a=(1-x^k)/(1-x); b=1/(1-x); c=(1-x^(k-1))/(1-x); CoefficientList[ Series[a b/(1-x^2 b c), {x, 0, nn}], x], {k, 1, nn}]//Grid (* Geoffrey Critzer, Sep 02 2012 *)
T[m_, n_] := T[m, n] = If[n == 0 || m == 1, 1, Sum[T[m, n-j], {j, 1, Min[n, m]}]]; Table[Table[T[1+d-n, n], {n, 1, d}], {d, 1, 14}] // Flatten (* Jean-François Alcover, Nov 12 2014, after Alois P. Heinz *)
CROSSREFS
Rows: A000045 (Fibonacci), A000073 (tribonacci), A000078 (tetranacci), etc.
Essentially a reflected version of A092921. See A048004 and A126198 for closely related arrays.
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved
A208447 Sum of the k-th powers of the numbers of standard Young tableaux over all partitions of n; square array A(n,k), n>=0, k>=0, read by antidiagonals. +30
18
1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 5, 1, 1, 2, 6, 10, 7, 1, 1, 2, 10, 24, 26, 11, 1, 1, 2, 18, 64, 120, 76, 15, 1, 1, 2, 34, 180, 596, 720, 232, 22, 1, 1, 2, 66, 520, 3060, 8056, 5040, 764, 30, 1, 1, 2, 130, 1524, 16076, 101160, 130432, 40320, 2620, 42 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,6
LINKS
Alois P. Heinz, Antidiagonals n = 0..50
Wikipedia, Young tableau
EXAMPLE
A(3,2) = 1^2 + 2^2 + 1^2 = 6 = 3! because 3 has partitions 111, 21, 3 with 1, 2, 1 standard Young tableaux, respectively:
.111. . 21 . . . . . . . . 3 . . . .
+---+ +------+ +------+ +---------+
| 1 | | 1 2 | | 1 3 | | 1 2 3 |
| 2 | | 3 .--+ | 2 .--+ +---------+
| 3 | +---+ +---+
+---+
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, 2, ...
3, 4, 6, 10, 18, 34, 66, ...
5, 10, 24, 64, 180, 520, 1524, ...
7, 26, 120, 596, 3060, 16076, 86100, ...
11, 76, 720, 8056, 101160, 1379176, 19902600, ...
MAPLE
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= proc(n, i, k, l) `if`(n=0, h(l)^k, `if`(i<1, 0, g(n, i-1, k, l)
+ `if`(i>n, 0, g(n-i, i, k, [l[], i]))))
end:
A:= (n, k)-> `if`(n=0, 1, g(n, n, k, [])):
seq(seq(A(n, d-n), n=0..d), d=0..10);
MATHEMATICA
h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]! / Product[Product[1 + l[[i]] - j + Sum [If[l[[k]] >= j, 1, 0], { k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, k_, l_] := If[n == 0, h[l]^k, If[i < 1, 0, g[n, i-1, k, l] + If[i > n, 0, g[n-i, i, k, Append[l, i]]]]]; a [n_, k_] := If[n == 0, 1, g[n, n, k, {}]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 11 2013, translated from Maple *)
CROSSREFS
Rows 0+1, 2, 3 give: A000012, A007395, A052548.
Main diagonal gives A319607.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Feb 26 2012
STATUS
approved
A104763 Triangle read by rows: Fibonacci(1), Fibonacci(2), ..., Fibonacci(n) in row n. +30
14
1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 3, 5, 1, 1, 2, 3, 5, 8, 1, 1, 2, 3, 5, 8, 13, 1, 1, 2, 3, 5, 8, 13, 21, 1, 1, 2, 3, 5, 8, 13, 21, 34, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,6
COMMENTS
Triangle of A104762, Fibonacci sequence in each row starts from the right.
The triangle or chess sums, see A180662 for their definitions, link the Fibonacci(n) triangle to sixteen different sequences, see the crossrefs. The knight sums Kn14 - Kn18 have been added. As could be expected all sums are related to the Fibonacci numbers. - Johannes W. Meijer, Sep 22 2010
Sequence B is called a reluctant sequence of sequence A, if B is triangle array read by rows: row number k coincides with first k elements of the sequence A. Sequence A104763 is reluctant sequence of Fibonacci numbers (A000045), except 0. - Boris Putievskiy, Dec 13 2012
LINKS
Boris Putievskiy, Transformations Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
FORMULA
F(1) through F(n) starting from the left in n-th row.
T(n,k) = A000045(k), 1<=k<=n. - R. J. Mathar, May 02 2008
a(n) = A000045(m), where m= n-t(t+1)/2, t=floor((-1+sqrt(8*n-7))/2). - Boris Putievskiy, Dec 13 2012
EXAMPLE
First few rows of the triangle are:
1;
1, 1;
1, 1, 2;
1, 1, 2, 3;
1, 1, 2, 3, 5;
1, 1, 2, 3, 5, 8;
1, 1, 2, 3, 5, 8, 13; ...
MATHEMATICA
Table[Fibonacci[k], {n, 15}, {k, n}]//Flatten (* G. C. Greubel, Jul 13 2019 *)
PROG
(Haskell)
a104763 n k = a104763_tabl !! (n-1) !! (k-1)
a104763_row n = a104763_tabl !! (n-1)
a104763_tabl = map (flip take $ tail a000045_list) [1..]
-- Reinhard Zumkeller, Aug 15 2013
(PARI) for(n=1, 15, for(k=1, n, print1(fibonacci(k), ", "))) \\ G. C. Greubel, Jul 13 2019
(Magma) [Fibonacci(k): k in [1..n], n in [1..15]]; // G. C. Greubel, Jul 13 2019
(Sage) [[fibonacci(k) for k in (1..n)] for n in (1..15)] # G. C. Greubel, Jul 13 2019
(GAP) Flat(List([1..15], n-> List([1..n], Fibonacci(k) ))) # G. C. Greubel, Jul 13 2019
CROSSREFS
Cf. A000071 (row sums). - R. J. Mathar, Jul 22 2009
Triangle sums (see the comments): A000071 (Row1; Kn4 & Ca1 & Ca4 & Gi1 & Gi4); A008346 (Row2); A131524 (Kn11); A001911 (Kn12); A006327 (Kn13); A167616 (Kn14); A180671 (Kn15); A180672 (Kn16); A180673 (Kn17); A180674 (Kn18); A052952 (Kn21 & Kn22 & Kn23 & Fi2 & Ze2); A001906 (Kn3 &Fi1 & Ze3); A004695 (Ca2 & Ze4); A001076 (Ca3 & Ze1); A080239 (Gi2); A081016 (Gi3). - Johannes W. Meijer, Sep 22 2010
KEYWORD
nonn,tabl,easy
AUTHOR
Gary W. Adamson, Mar 23 2005
EXTENSIONS
Edited by R. J. Mathar, May 02 2008
Extended by R. J. Mathar, Aug 27 2008
STATUS
approved
A144328 A002260 preceded by a column of 1's: a (1, 1, 2, 3, 4, 5, ...) crescendo triangle by rows. +30
14
1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 3, 4, 1, 1, 2, 3, 4, 5, 1, 1, 2, 3, 4, 5, 6, 1, 1, 2, 3, 4, 5, 6, 7, 1, 1, 2, 3, 4, 5, 6, 7, 8, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,6
COMMENTS
Row sums = A000124.
Eigensequence of the triangle = A000142, the factorials.
The triangle as an infinite lower triangular matrix * [1,2,3,...] = A064999.
Generated from A128227 by rotating each row by one position to the right. - R. J. Mathar, Sep 25 2008
A sequence B is called a reluctant sequence of sequence A, if B is triangle array read by rows: row number k coincides with first k elements of the sequence A. Sequence A144328 is the reluctant sequence of A028310 (1 followed by the natural numbers). - Boris Putievskiy, Dec 12 2012
If offset were changed to 0, a(n) would equal the
Let S_n be the set of partitions of n into distinct parts where the number of parts is maximal for that n. For example, for n=6, the set S_6 consists of just one such partition: S_6={1,2,3}. Similarly, for n=7, S_7={1,2,4}, But for n=8, S_8 will contain two partitions S_8= { {1,2,5}, {1,3,4} }. Then |S(n)| = a(n+1). Cf. A178702. - David S. Newman and Benoit Jubin, Dec 13 2010
LINKS
Boris Putievskiy, Transformations Integer Sequences And Pairing Functions, arXiv:1212.2732 [math.CO], 2012.
FORMULA
Triangle A002260 (natural numbers crescendo triangle) preceded by a column of 1's, = a (1, 1, 2, 3, 4, 5, ...) crescendo triangle by rows.
a(n) = A028310(m), where m = n-t(t+1)/2, t = floor((-1+sqrt(8*n-7))/2)). - Boris Putievskiy, Dec 13 2012
EXAMPLE
First few rows of the triangle:
1;
1, 1;
1, 1, 2;
1, 1, 2, 3;
1, 1, 2, 3, 4;
1, 1, 2, 3, 4, 5;
...
MATHEMATICA
Flatten[Table[Join[{1}, Range[n]], {n, 0, 11}]] (* Harvey P. Dale, Aug 10 2013 *)
PROG
(Haskell)
a144328 n k = a144328_tabl !! (n-1) !! (k-1)
a144328_row n = a144328_tabl !! (n-1)
a144328_tabl = [1] : map (\xs@(x:_) -> x : xs) a002260_tabl
-- Reinhard Zumkeller, Apr 29 2015
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Sep 18 2008
STATUS
approved
A152977 Square array A(n,k), n>=0, k>=0, read by antidiagonals: A(n,k) is the number of partitions of 2^n into powers of 2 less than or equal to 2^k. +30
13
1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 5, 1, 1, 2, 4, 9, 9, 1, 1, 2, 4, 10, 25, 17, 1, 1, 2, 4, 10, 35, 81, 33, 1, 1, 2, 4, 10, 36, 165, 289, 65, 1, 1, 2, 4, 10, 36, 201, 969, 1089, 129, 1, 1, 2, 4, 10, 36, 202, 1625, 6545, 4225, 257, 1, 1, 2, 4, 10, 36, 202, 1827, 17361, 47905, 16641, 513, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Column sequences converge towards A002577.
LINKS
FORMULA
A(n,k) = [x^2^(n-1)] 1/(1-x) * 1/Product_{j=0..k-1} (1-x^(2^j)) for n>0; A(0,k) = 1.
EXAMPLE
A(3,2) = 9, because there are 9 partitions of 2^3=8 into powers of 2 less than or equal to 2^2=4: [4,4], [4,2,2], [4,2,1,1], [4,1,1,1,1], [2,2,2,2], [2,2,2,1,1], [2,2,1,1,1,1], [2,1,1,1,1,1,1], [1,1,1,1,1,1,1,1].
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
1, 2, 2, 2, 2, 2, ...
1, 3, 4, 4, 4, 4, ...
1, 5, 9, 10, 10, 10, ...
1, 9, 25, 35, 36, 36, ...
1, 17, 81, 165, 201, 202, ...
MAPLE
b:= proc(n, j) local nn, r;
if n<0 then 0
elif j=0 then 1
elif j=1 then n+1
elif n<j then b(n, j):= b(n-1, j) +b(2*n, j-1)
else nn:= 1 +floor(n);
r:= n-nn;
(nn-j) *binomial(nn, j) *add(binomial(j, h)
/(nn-j+h) *b(j-h+r, j) *(-1)^h, h=0..j-1)
fi
end:
A:= (n, k)-> `if`(n=0, 1, b(2^(n-k), k)):
seq(seq(A(n, d-n), n=0..d), d=0..11);
MATHEMATICA
b[n_, j_] := Module[{nn, r}, Which[n < 0, 0, j == 0, 1, j == 1, n+1, n < j, b[n, j] = b[n-1, j]+b[2*n, j-1], True, nn = 1+Floor[n]; r := n-nn; (nn-j)*Binomial[nn, j]*Sum[Binomial[j, h]/(nn-j+h)*b[j-h+r, j]*(-1)^h, {h, 0, j-1}]]]; a[n_, k_] := If[n == 0, 1, b[2^(n-k), k]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 11}] // Flatten (* Jean-François Alcover, Dec 18 2013, translated from Maple *)
CROSSREFS
Columns k=0-10 give: A000012, A094373, A028400(n-2) for n>1, A210772, A210773, A210774, A210775, A210776, A210777, A210778, A210779.
Main diagonal and lower diagonals give: A002577, A125792, A125794.
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jan 26 2011
STATUS
approved
A259799 Array read by antidiagonals upwards: T(n,k) = number of partitions of k^n into n-th powers (n>=1, k>=0). +30
11
1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 5, 1, 1, 2, 5, 8, 7, 1, 1, 2, 7, 17, 19, 11, 1, 1, 2, 9, 36, 62, 43, 15, 1, 1, 2, 13, 88, 253, 258, 98, 22, 1, 1, 2, 19, 218, 1104, 1886, 1050, 220, 30, 1, 1, 2, 27, 550, 5082, 15772, 14800, 4365, 504, 42, 1, 1, 2, 40, 1413, 24119, 140549, 241582, 118238, 18012, 1116, 56 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,6
LINKS
EXAMPLE
The array begins:
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, ...
1, 1, 2, 4, 8, 19, 43, 98, 220, 504, ...
1, 1, 2, 5, 17, 62, 258, 1050, 4365, 18012, ...
1, 1, 2, 7, 36, 253, 1886, 14800, 118238, ...
1, 1, 2, 9, 88, 1104, 15772, 241582, ...
...
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0 or i=1, 1,
`if`(i=2, 1+iquo(n, i^k), b(n, i-1, k)+
`if`(i^k>n, 0, b(n-i^k, i, k))))
end:
T:= (n, k)-> b(k^n, k, n):
seq(seq(T(d-k, k), k=0..d-1), d=1..12); # Alois P. Heinz, Jul 10 2015
MATHEMATICA
b[n_, i_, k_] := b[n, i, k] = If[n==0 || i==1, 1, If[i==2, 1+Quotient[n, i^k], b[n, i-1, k] + If[i^k>n, 0, b[n-i^k, i, k]]]]; T[n_, k_] := b[k^n, k, n]; Table[ Table[ T[d-k, k], {k, 0, d-1}], {d, 1, 12}] // Flatten (* Jean-François Alcover, Jul 15 2015, after Alois P. Heinz *)
CROSSREFS
T(n,n) gives A331402.
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jul 06 2015
EXTENSIONS
More terms from Alois P. Heinz, Jul 10 2015
STATUS
approved
page 1 2 3 4 5 6 7 8

Search completed in 0.013 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 11 15:23 EDT 2024. Contains 374234 sequences. (Running on oeis4.)