login
A210779
Number of partitions of 2^n into powers of 2 less than or equal to 1024.
2
1, 2, 4, 10, 36, 202, 1828, 27338, 692004, 30251722, 2320518948, 316359580361, 77160820913241, 31769732129318865, 19210889607930498081, 14781930262928342616641, 13037860166110209522457729, 12369535268518332988593592577, 12186672180675798897571822711297
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (2047, -1396054, 407647768, -55440096448, 3634008902656, -116288284884992, 1816661080408064, -13678389311307776, 47968050187599872, -72022409665839104, 36028797018963968).
FORMULA
G.f.: (-95460882767931143880704*x^20 +143817459476148640546816*x^19 -47353367247905900986368*x^18 -1833431416452222550016*x^17 +851800662334219223040*x^16 -21573396097321885696*x^15 -5556995021730048*x^14 -2458328204903632*x^13 -3738333173327178*x^12 -5646507818862569*x^11 -16176670881134614*x^10 +26835366859855894*x^9 -10475796196345878*x^8 +1598080542315542*x^7 -109238000834070*x^6 +3524745413782*x^5 -54630364694*x^4 +404863838*x^3 -1391964*x^2 +2045*x-1) / Product_{j=0..10} (2^j*x-1).
a(n) = [x^2^(n-1)] 1/(1-x) * 1/Product_{j=0..9} (1-x^(2^j)) for n>0.
MAPLE
gf:= (-1 +(2045 +(-1391964 +(404863838 +(-54630364694 +(3524745413782 +(-109238000834070 +(1598080542315542 +(-10475796196345878 +(26835366859855894 +(-16176670881134614 +(-5646507818862569 +(-3738333173327178 +(-2458328204903632 +(-5556995021730048 +(-21573396097321885696 +(851800662334219223040 +(-1833431416452222550016 +(-47353367247905900986368
+(143817459476148640546816 -95460882767931143880704*x) *x) *x) *x) *x) *x) *x) *x) *x) *x) *x) *x) *x) *x) *x) *x) *x) *x) *x) *x)/ mul(2^j*x-1, j=0..10): a:= n-> coeff(series(gf, x, n+1), x, n): seq(a(n), n=0..20);
CROSSREFS
Column k=10 of A152977.
Sequence in context: A210776 A210777 A210778 * A002577 A076132 A371999
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Mar 26 2012
STATUS
approved