login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A023434 Dying rabbits: a(n) = a(n-1) + a(n-2) - a(n-4). 12
0, 1, 1, 2, 3, 4, 6, 8, 11, 15, 20, 27, 36, 48, 64, 85, 113, 150, 199, 264, 350, 464, 615, 815, 1080, 1431, 1896, 2512, 3328, 4409, 5841, 7738, 10251, 13580, 17990, 23832, 31571, 41823, 55404, 73395, 97228, 128800, 170624, 226029, 299425, 396654, 525455 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Limit_{n->infinity} a(n)/a(n-1) = positive root of 1+x-x^3 (smallest Pisot-Vijayaraghavan number, A060006). - Gerald McGarvey, Sep 19 2004
a(n) is the number of distinct even run-types taken over nonempty subsets of [n+1]. The run-type of a set of positive integers is the sequence of lengths when the set is decomposed into maximal runs of consecutive integers and it is even if all its entries are even. For example, the set {2,3,5,6,9,10,11} has run-type (2,2,3) and a(6)=6 counts (2),(4),(6),(2,2),(2,4),(4,2). - David Callan, Jul 14 2006
Partial sums of the sequence obtained by deleting the first 2 terms of A000931. Example: 0+1+0+1+1 = 3 = a(4). - David Callan, Jul 14 2006
One less than the sequence obtained by deleting the first 7 terms of A000931. - Ira M. Gessel, May 02 2007
This sequence counts ordered partitions of (n-1) into parts less than or equal to 3, in which the order of 1's are unimportant. Alternately, the order of 2's and 3's are important (see example). - David Neil McGrath, Apr 26 2015
Interleaving of A289692 and A077855. - Bruce J. Nicholson, Apr 09 2018
LINKS
O. Bouillot, The Algebra of Multitangent Functions, arXiv:1404.0992 [math.NT], 2014.
O. Bouillot, The Algebra of Multitangent Functions, Journal of Algebra, Volume 410, 15 July 2014, Pages 148-238.
J. H. E. Cohn, Letter to the editor, Fib. Quart. 2 (1964), 108.
V. E. Hoggatt, Jr. and D. A. Lind, The dying rabbit problem, Fib. Quart. 7 (1969), 482-487.
FORMULA
a(n) = A000931(n+7)-1.
a(0)=0, a(1)=1, a(2)=1 then for n>2 a(n)=ceiling(r*a(n-1)) where r is the positive root of x^3-x-1=0. - Benoit Cloitre, Jun 19 2004
G.f.: x/((1-x)*(1-x^2-x^3)). - Jon Perry, Jul 04 2004
For n>2 a(n) = floor(sqrt(a(n-3)*a(n-2) + a(n-2)*a(n-1) + a(n-1)*a(n-3))) + 1. - Gerald McGarvey, Sep 19 2004
a(n) = Sum_{k=1..floor((n+2)/3)} binomial(floor((n+2-k)/2),k). This formula counts even run-types by length. - David Callan, Jul 14 2006
a(n) = a(n-2) + a(n-3) + 1. - Mark Dols, Feb 01 2010
a(n) + a(n+1) = A054405(n). Partial sums is A054405. - Michael Somos, Dec 01 2013
a(-3-n) = -A077905(n) for all n in Z. - Michael Somos, Sep 25 2014
EXAMPLE
G.f. = x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 6*x^6 + 8*x^7 + 11*x^8 + ...
a(7)=8, with (n-1)=6. The partially ordered partitions of 6 are (33),(321,312,132=one),(231,213,123=one),(3111,1311,1131,1113=one),(222),(2211,1122,1221,2112,1212,2121=one),(21111,12111,11211,11121,11112=one),(111111). - David Neil McGrath, Apr 26 2015
MAPLE
f:= gfun:-rectoproc({a(n)=a(n-1)+a(n-2)-a(n-4), seq(a(i)=[0, 1, 1, 2][i+1], i=0..3)}, a(n), remember):
seq(f(i), i=0..100); # Robert Israel, May 04 2015
MATHEMATICA
a[ n_] := If[ n < 0, SeriesCoefficient[ -x^3 / (1 - x^2 - x^3 + x^4), {x, 0, -n}], SeriesCoefficient[ x / (1 - x - x^2 + x^4), {x, 0, n}]]; (* Michael Somos, Nov 29 2013 *)
LinearRecurrence[{1, 1, 0, -1}, {0, 1, 1, 2}, 50] (* Vincenzo Librandi, Apr 27 2015 *)
PROG
(PARI) {a(n) = polcoeff( if( n<0, -x^3 / (1 - x^2 - x^3 + x^4), x / (1 - x - x^2 + x^4)) + x * O(x^abs(n)), abs(n))}; /* Michael Somos, Nov 29 2013 */
(PARI) x='x+O('x^99); concat(0, Vec(x/((1-x)*(1-x^2-x^3)))) \\ Altug Alkan, Apr 09 2018
(Magma) [0, 1] cat [ n le 4 select (n) else Self(n-1)+Self(n-2)-Self(n-4): n in [1..45] ]; // Vincenzo Librandi, Apr 27 2015
CROSSREFS
Sequence in context: A036001 A027336 A237830 * A353035 A087192 A188917
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 26 17:57 EST 2024. Contains 370352 sequences. (Running on oeis4.)