login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: seq:1,1,1,1,2,1,1,3,2,1
Displaying 1-10 of 51 results found. page 1 2 3 4 5 6
     Sort: relevance | references | number | modified | created      Format: long | short | data
A355737 Number of ways to choose a sequence of divisors, one of each prime index of n (with multiplicity), such that the result has no common divisor > 1. +30
28
0, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 2, 1, 3, 4, 1, 1, 4, 1, 2, 4, 2, 1, 2, 3, 4, 7, 3, 1, 4, 1, 1, 4, 2, 6, 4, 1, 4, 6, 2, 1, 6, 1, 2, 8, 3, 1, 2, 5, 4, 4, 4, 1, 8, 4, 3, 5, 4, 1, 4, 1, 2, 10, 1, 6, 4, 1, 2, 6, 6, 1, 4, 1, 6, 8, 4, 6, 8, 1, 2, 15, 2, 1, 6, 4, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,6
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
LINKS
Wikipedia, Coprime integers.
EXAMPLE
The a(2) = 1 through a(18) = 4 choices:
1 1 11 1 11 1 111 11 11 1 111 1 11 11 1111 1 111
12 12 13 112 12 13 112
21 14 21 121
23 122
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[Length[Select[Tuples[Divisors/@primeMS[n]], GCD@@#==1&]], {n, 100}]
CROSSREFS
Dominated by A355731, firsts A355732, primes A355741, prime-powers A355742.
For weakly increasing instead of coprime we have A355735, primes A355745.
Positions of first appearances are A355738.
For strict instead of coprime we have A355739, zeros A355740.
A000005 counts divisors.
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.
A120383 lists numbers divisible by all of their prime indices.
A289508 gives GCD of prime indices.
A289509 ranks relatively prime partitions, odd A302697, squarefree A302796.
A324850 lists numbers divisible by the product of their prime indices.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 17 2022
STATUS
approved
A052509 Knights-move Pascal triangle: T(n,k), n >= 0, 0 <= k <= n; T(n,0) = T(n,n) = 1, T(n,k) = T(n-1,k) + T(n-2,k-1) for k = 1,2,...,n-1, n >= 2. +30
25
1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 4, 2, 1, 1, 5, 7, 4, 2, 1, 1, 6, 11, 8, 4, 2, 1, 1, 7, 16, 15, 8, 4, 2, 1, 1, 8, 22, 26, 16, 8, 4, 2, 1, 1, 9, 29, 42, 31, 16, 8, 4, 2, 1, 1, 10, 37, 64, 57, 32, 16, 8, 4, 2, 1, 1, 11, 46, 93, 99, 63, 32, 16, 8, 4, 2, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Also square array T(n,k) (n >= 0, k >= 0) read by antidiagonals: T(n,k) = Sum_{i=0..k} binomial(n,i).
As a number triangle read by rows, this is T(n,k) = Sum_{i=n-2*k..n-k} binomial(n-k,i), with T(n,k) = T(n-1,k) + T(n-2,k-1). Row sums are A000071(n+2). Diagonal sums are A023435(n+1). It is the reverse of the Whitney triangle A004070. - Paul Barry, Sep 04 2005
Also, twice number of orthants intersected by a generic k-dimensional subspace of R^n [Naiman and Scheinerman, 2017]. - N. J. A. Sloane, Mar 03 2018
LINKS
Clark Kimberling, Path-counting and Fibonacci numbers, Fib. Quart. 40 (4) (2002) 328-338, Example 1C.
Daniel Q. Naiman and Edward R. Scheinerman, Arbitrage and Geometry, arXiv:1709.07446 [q-fin.MF], 2017 [Contains the square array multiplied by 2].
Richard L. Ollerton and Anthony G. Shannon, Some properties of generalized Pascal squares and triangles, Fib. Q., 36 (1998), 98-109. See Tables 5 and 14.
D. J. Price, Some unusual series occurring in n-dimensional geometry, Math. Gaz., 30 (1946), 149-150.
FORMULA
T(n, k) = Sum_{m=0..n} binomial(n-k, k-m). - Wouter Meeussen, Oct 03 2002
From Werner Schulte, Feb 15 2018: (Start)
Referring to the square array T(i,j):
G.f. of row n: Sum_{k>=0} T(n,k) * x^k = (1+x)^n / (1-x).
G.f. of T(i,j): Sum_{k>=0, n>=0} T(n,k) * x^k * y^n = 1 / ((1-x)*(1-y-x*y)).
Let a_i(n) be multiplicative with a_i(p^e) = T(i, e), p prime and e >= 0, then Sum_{n>0} a_i(n)/n^s = (zeta(s))^(i+1) / (zeta(2*s))^i for i >= 0.
(End)
T(n, k) = hypergeom([-k, -n + k], [-k], -1). - Peter Luschny, Nov 28 2021
From Jianing Song, May 30 2022: (Start)
Referring to the triangle, G.f.: Sum_{n>=0, 0<=k<=n} T(n,k) * x^n * y^k = 1 / ((1-x*y)*(1-x-x^2*y)).
T(n,k) = 2^(n-k) for ceiling(n/2) <= k <= n. (End)
EXAMPLE
Triangle begins:
[0] 1;
[1] 1, 1;
[2] 1, 2, 1;
[3] 1, 3, 2, 1;
[4] 1, 4, 4, 2, 1;
[5] 1, 5, 7, 4, 2, 1;
[6] 1, 6, 11, 8, 4, 2, 1;
[7] 1, 7, 16, 15, 8, 4, 2, 1;
[8] 1, 8, 22, 26, 16, 8, 4, 2, 1;
[9] 1, 9, 29, 42, 31, 16, 8, 4, 2, 1;
As a square array, this begins:
1 1 1 1 1 1 ...
1 2 2 2 2 2 ...
1 3 4 4 4 4 ...
1 4 7 8 8 8 ...
1 5 11 15 16 ...
1 6 16 26 31 32 ...
MAPLE
a := proc(n::nonnegint, k::nonnegint) option remember: if k=0 then RETURN(1) fi: if k=n then RETURN(1) fi: a(n-1, k)+a(n-2, k-1) end: for n from 0 to 11 do for k from 0 to n do printf(`%d, `, a(n, k)) od: od: # James A. Sellers, Mar 17 2000
with(combinat): for s from 0 to 11 do for n from s to 0 by -1 do if n=0 or s-n=0 then printf(`%d, `, 1) else printf(`%d, `, sum(binomial(n, i), i=0..s-n)) fi; od: od: # James A. Sellers, Mar 17 2000
MATHEMATICA
Table[Sum[Binomial[n-k, k-m], {m, 0, n}], {n, 0, 10}, {k, 0, n}]
T[n_, k_] := Hypergeometric2F1[-k, -n + k, -k, -1];
Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Peter Luschny, Nov 28 2021 *)
PROG
(PARI) T(n, k)=sum(m=0, n, binomial(n-k, k-m));
for(n=0, 10, for(k=0, n, print1(T(n, k), ", "); ); print(); ); /* show triangle */
(Haskell)
a052509 n k = a052509_tabl !! n !! k
a052509_row n = a052509_tabl !! n
a052509_tabl = [1] : [1, 1] : f [1] [1, 1] where
f row' row = rs : f row rs where
rs = zipWith (+) ([0] ++ row' ++ [1]) (row ++ [0])
-- Reinhard Zumkeller, Nov 22 2012
(GAP) A052509:=Flat(List([0..100], n->List([0..n], k->Sum([0..n], m->Binomial(n-k, k-m))))); # Muniru A Asiru, Sat Feb 17 2018
(Magma) [[(&+[Binomial(n-k, k-j): j in [0..n]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, May 13 2019
(Sage) [[sum(binomial(n-k, k-j) for j in (0..n)) for k in (0..n)] for n in (0..10)] # G. C. Greubel, May 13 2019
CROSSREFS
Row sums A000071; Diagonal sums A023435; Mirror A004070.
Columns give A000027, A000124, A000125, A000127, A006261, ...
Partial sums across rows of (extended) Pascal's triangle A052553.
KEYWORD
nonn,tabl,easy,nice
AUTHOR
N. J. A. Sloane, Mar 17 2000
EXTENSIONS
More terms from James A. Sellers, Mar 17 2000
Entry formed by merging two earlier entries. - N. J. A. Sloane, Jun 17 2007
Edited by Johannes W. Meijer, Jul 24 2011
STATUS
approved
A077592 Table by antidiagonals of tau_k(n), the k-th Piltz function (see A007425), or n-th term of the sequence resulting from applying the inverse Möbius transform (k-1) times to the all-ones sequence. +30
23
1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 3, 3, 1, 1, 5, 4, 6, 2, 1, 1, 6, 5, 10, 3, 4, 1, 1, 7, 6, 15, 4, 9, 2, 1, 1, 8, 7, 21, 5, 16, 3, 4, 1, 1, 9, 8, 28, 6, 25, 4, 10, 3, 1, 1, 10, 9, 36, 7, 36, 5, 20, 6, 4, 1, 1, 11, 10, 45, 8, 49, 6, 35, 10, 9, 2, 1, 1, 12, 11, 55, 9, 64, 7, 56, 15, 16, 3, 6, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
As an array with offset n=0, k=1, also the number of length n chains of divisors of k. - Gus Wiseman, Aug 04 2022
LINKS
Adolf Piltz, Ueber das Gesetz, nach welchem die mittlere Darstellbarkeit der natürlichen Zahlen als Produkte einer gegebenen Anzahl Faktoren mit der Grösse der Zahlen wächst, Doctoral Dissertation, Friedrich-Wilhelms-Universität zu Berlin, 1881; the k-th Piltz function tau_k(n) is denoted by phi(n,k) and its recurrence and Dirichlet series appear on p. 6.
Wikipedia, Adolf Piltz.
FORMULA
If n = Product_i p_i^e_i, then T(n,k) = Product_i C(k+e_i-1, e_i). T(n,k) = sum_d{d|n} T(n-1,d) = A077593(n,k) - A077593(n-1,k).
Columns are multiplicative.
Dirichlet g.f. for column k: Zeta(s)^k. - Geoffrey Critzer, Feb 16 2015
A(n,k) = A334997(k,n). - Gus Wiseman, Aug 04 2022
EXAMPLE
T(6,3) = 9 because we have: 1*1*6, 1*2*3, 1*3*2, 1*6*1, 2*1*3, 2*3*1, 3*1*2, 3*2*1, 6*1*1. - Geoffrey Critzer, Feb 16 2015
From Gus Wiseman, May 03 2021: (Start)
Array begins:
k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8
n=0: 1 1 1 1 1 1 1 1
n=1: 1 2 2 3 2 4 2 4
n=2: 1 3 3 6 3 9 3 10
n=3: 1 4 4 10 4 16 4 20
n=4: 1 5 5 15 5 25 5 35
n=5: 1 6 6 21 6 36 6 56
n=6: 1 7 7 28 7 49 7 84
n=7: 1 8 8 36 8 64 8 120
n=8: 1 9 9 45 9 81 9 165
The triangular form T(n,k) = A(n-k,k) gives the number of length n - k chains of divisors of k. It begins:
1
1 1
1 2 1
1 3 2 1
1 4 3 3 1
1 5 4 6 2 1
1 6 5 10 3 4 1
1 7 6 15 4 9 2 1
1 8 7 21 5 16 3 4 1
1 9 8 28 6 25 4 10 3 1
1 10 9 36 7 36 5 20 6 4 1
1 11 10 45 8 49 6 35 10 9 2 1
(End)
MAPLE
with(numtheory):
A:= proc(n, k) option remember; `if`(k=1, 1,
add(A(d, k-1), d=divisors(n)))
end:
seq(seq(A(n, 1+d-n), n=1..d), d=1..14); # Alois P. Heinz, Feb 25 2015
MATHEMATICA
tau[n_, 1] = 1; tau[n_, k_] := tau[n, k] = Plus @@ (tau[ #, k - 1] & /@ Divisors[n]); Table[tau[n - k + 1, k], {n, 14}, {k, n, 1, -1}] // Flatten (* Robert G. Wilson v *)
tau[1, k_] := 1; tau[n_, k_] := Times @@ (Binomial[Last[#] + k - 1, k - 1] & /@ FactorInteger[n]); Table[tau[k, n - k + 1], {n, 1, 13}, {k, 1, n}] // Flatten (* Amiram Eldar, Sep 13 2020 *)
Table[Length[Select[Tuples[Divisors[k], n-k], And@@Divisible@@@Partition[#, 2, 1]&]], {n, 12}, {k, 1, n}] (* TRIANGLE, Gus Wiseman, May 03 2021 *)
Table[Length[Select[Tuples[Divisors[k], n-1], And@@Divisible@@@Partition[#, 2, 1]&]], {n, 6}, {k, 6}] (* ARRAY, Gus Wiseman, May 03 2021 *)
CROSSREFS
Columns include (with multiplicity and some offsets) A000012, A000027, A000027, A000217, A000027, A000290, A000027, A000292, A000217, A000290, A000027, A002411, A000027, A000290, A000290, A000332 etc.
Cf. A077593.
Row n = 2 of the array is A007425.
Row n = 3 of the array is A007426.
Row n = 4 of the array is A061200.
The diagonal n = k of the array (central column of the triangle) is A163767.
The transpose of the array is A334997.
Diagonal n = k of the array is A343939.
Antidiagonal sums of the array (or row sums of the triangle) are A343940.
A067824(n) counts strict chains of divisors starting with n.
A074206(n) counts strict chains of divisors from n to 1.
A146291(n,k) counts divisors of n with k prime factors (with multiplicity).
A251683(n,k) counts strict length k + 1 chains of divisors from n to 1.
A253249(n) counts nonempty chains of divisors of n.
A334996(n,k) counts strict length k chains of divisors from n to 1.
A337255(n,k) counts strict length k chains of divisors starting with n.
KEYWORD
mult,nonn,tabl,look
AUTHOR
Henry Bottomley, Nov 08 2002
EXTENSIONS
Typo in formula fixed by Geoffrey Critzer, Feb 16 2015
STATUS
approved
A343656 Array read by antidiagonals where A(n,k) is the number of divisors of n^k. +30
19
1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 3, 3, 1, 1, 5, 4, 5, 2, 1, 1, 6, 5, 7, 3, 4, 1, 1, 7, 6, 9, 4, 9, 2, 1, 1, 8, 7, 11, 5, 16, 3, 4, 1, 1, 9, 8, 13, 6, 25, 4, 7, 3, 1, 1, 10, 9, 15, 7, 36, 5, 10, 5, 4, 1, 1, 11, 10, 17, 8, 49, 6, 13, 7, 9, 2, 1, 1, 12, 11, 19, 9, 64, 7, 16, 9, 16, 3, 6, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
First differs from A343658 at A(4,2) = 5, A343658(4,2) = 6.
As a triangle, T(n,k) = number of divisors of k^(n-k).
LINKS
FORMULA
A(n,k) = A000005(A009998(n,k)), where A009998(n,k) = n^k is the interpretation as an array.
A(n,k) = Sum_{d|n} k^omega(d). - Seiichi Manyama, May 15 2021
EXAMPLE
Array begins:
k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7
n=1: 1 1 1 1 1 1 1 1
n=2: 1 2 3 4 5 6 7 8
n=3: 1 2 3 4 5 6 7 8
n=4: 1 3 5 7 9 11 13 15
n=5: 1 2 3 4 5 6 7 8
n=6: 1 4 9 16 25 36 49 64
n=7: 1 2 3 4 5 6 7 8
n=8: 1 4 7 10 13 16 19 22
n=9: 1 3 5 7 9 11 13 15
Triangle begins:
1
1 1
1 2 1
1 3 2 1
1 4 3 3 1
1 5 4 5 2 1
1 6 5 7 3 4 1
1 7 6 9 4 9 2 1
1 8 7 11 5 16 3 4 1
1 9 8 13 6 25 4 7 3 1
1 10 9 15 7 36 5 10 5 4 1
1 11 10 17 8 49 6 13 7 9 2 1
1 12 11 19 9 64 7 16 9 16 3 6 1
1 13 12 21 10 81 8 19 11 25 4 15 2 1
For example, row n = 8 counts the following divisors:
1 64 243 256 125 36 7 1
32 81 128 25 18 1
16 27 64 5 12
8 9 32 1 9
4 3 16 6
2 1 8 4
1 4 3
2 2
1 1
MATHEMATICA
Table[DivisorSigma[0, k^(n-k)], {n, 10}, {k, n}]
PROG
(PARI) A(n, k) = numdiv(n^k); \\ Seiichi Manyama, May 15 2021
CROSSREFS
Columns k=1..9 of the array give A000005, A048691, A048785, A344327, A344328, A344329, A343526, A344335, A344336.
Row n = 6 of the array is A000290.
Diagonal n = k of the array is A062319.
Array antidiagonal sums (row sums of the triangle) are A343657.
Dominated by A343658.
A000312 = n^n.
A007318 counts k-sets of elements of {1..n}.
A009998(n,k) = n^k (as an array, offset 1).
A059481 counts k-multisets of elements of {1..n}.
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Apr 28 2021
STATUS
approved
A226130 Denominators of rational numbers as generated by the rules: 1 is in S, and if nonzero x is in S, then x+1 and -1/x are in S. (See Comments.) +30
16
1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 4, 3, 2, 1, 1, 5, 4, 3, 2, 2, 3, 1, 6, 5, 4, 3, 3, 5, 2, 5, 3, 1, 7, 6, 5, 4, 4, 7, 3, 8, 5, 2, 7, 5, 3, 1, 1, 8, 7, 6, 5, 5, 9, 4, 11, 7, 3, 11, 8, 5, 2, 2, 9, 7, 5, 3, 3, 4, 1, 9, 8, 7, 6, 6, 11, 5, 14, 9, 4, 15, 11, 7, 3, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
Let S be the set of numbers defined by these rules: 1 is in S, and if nonzero x is in S, then x + 1 and -1/x are in S. Then S is the set of all rational numbers, produced in generations as follows: g(1) = (1), g(2) = (2, -1), g(3) = (3, -1/2, 0), g(4) = (4, -1/3, 1/2), ... For n > 4, once g(n-1) = (c(1), ..., c(z)) is defined, g(n) is formed from the vector (c(1)+1, -1/c(1), c(2)+1, -1/c(2), ..., c(z)+1, -1/c(z)) by deleting previously generated elements. Let S' denote the sequence formed by concatenating the generations.
A226130: Denominators of terms of S'
A226131: Numerators of terms of S'
A226136: Positions of positive integers in S'
A226137: Positions of integers in S'
The length of row n is given by A226275(n-1). - Peter Kagey, Jan 17 2022
LINKS
EXAMPLE
The denominators and numerators are read from the rationals in S':
1/1, 2/1, -1/1, 3/1, -1/2, 0/1, 4/1, -1/3, 1/2, ...
Table begins:
n |
--+-----------------------------------------------
1 | 1;
2 | 1, 1;
3 | 1, 2, 1;
4 | 1, 3, 2;
5 | 1, 4, 3, 2, 1;
6 | 1, 5, 4, 3, 2, 2, 3;
7 | 1, 6, 5, 4, 3, 3, 5, 2, 5, 3;
8 | 1, 7, 6, 5, 4, 4, 7, 3, 8, 5, 2, 7, 5, 3, 1;
MATHEMATICA
g[1] := {1}; z = 20; g[n_] := g[n] = DeleteCases[Flatten[Transpose[{# + 1, -1/#}]]&[DeleteCases[g[n - 1], 0]], Apply[Alternatives, Flatten[Map[g, Range[n - 1]]]]]; Flatten[Map[g, Range[7]]] (* ordered rationals *)
Map[g, Range[z]]; Table[Length[g[i]], {i, 1, z}] (* cf. A003410 *)
f = Flatten[Map[g, Range[z]]];
Take[Denominator[f], 100] (* A226130 *)
Take[Numerator[f], 100] (* A226131 *)
p1 = Flatten[Table[Position[f, n], {n, 1, z}]] (* A226136 *)
p2 = Flatten[Table[Position[f, -n], {n, 0, z}]];
Union[p1, p2] (* A226137 *) (* Peter J. C. Moses, May 26 2013 *)
PROG
(Python)
from fractions import Fraction
from itertools import count, islice
def agen():
rats = [Fraction(1, 1)]
seen = {Fraction(1, 1)}
for n in count(1):
yield from [r.denominator for r in rats]
newrats = []
for r in rats:
f = 1+r
if f not in seen:
newrats.append(1+r)
seen.add(f)
if r != 0:
g = -1/r
if g not in seen:
newrats.append(-1/r)
seen.add(g)
rats = newrats
print(list(islice(agen(), 84))) # Michael S. Branicky, Jan 17 2022
CROSSREFS
Cf. A226080 (rabbit ordering of positive rationals).
Cf. A226247 (analogous with "0 is in S").
KEYWORD
nonn,frac,tabf
AUTHOR
Clark Kimberling, May 28 2013
STATUS
approved
A172119 Sum the k preceding elements in the same column and add 1 every time. +30
15
1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 4, 2, 1, 1, 5, 7, 4, 2, 1, 1, 6, 12, 8, 4, 2, 1, 1, 7, 20, 15, 8, 4, 2, 1, 1, 8, 33, 28, 16, 8, 4, 2, 1, 1, 9, 54, 52, 31, 16, 8, 4, 2, 1, 1, 10, 88, 96, 60, 32, 16, 8, 4, 2, 1, 1, 11, 143, 177, 116, 63, 32, 16, 8, 4, 2, 1, 1, 12, 232, 326, 224, 124, 64, 32, 16 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Columns are related to Fibonacci n-step numbers. Are there closed forms for the sequences in the columns?
We denote by a(n,k) the number which is in the (n+1)-th row and (k+1)-th-column. With help of the definition, we also have the recurrence relation: a(n+k+1, k) = 2*a(n+k, k) - a(n, k). We see on the main diagonal the numbers 1,2,4, 8, ..., which is clear from the formula for the general term d(n)=2^n. - Richard Choulet, Jan 31 2010
Most of the paper by Dunkel (1925) is a study of the columns of this table. - Petros Hadjicostas, Jun 14 2019
LINKS
O. Dunkel, Solutions of a probability difference equation, Amer. Math. Monthly, 32 (1925), 354-370; see p. 356.
T. Langley, J. Liese, and J. Remmel, Generating Functions for Wilf Equivalence Under Generalized Factor Order, J. Int. Seq. 14 (2011), # 11.4.2.
Eric Weisstein's World of Mathematics, Fibonacci n-Step Number.
Wikipedia, Fibonacci number.
FORMULA
T(n,0) = 1.
T(n,1) = n.
T(n,2) = A000071(n+1).
T(n,3) = A008937(n-2).
The general term in the n-th row and k-th column is given by: a(n, k) = Sum_{j=0..floor(n/(k+1))} ((-1)^j binomial(n-k*j,n-(k+1)*j)*2^(n-(k+1)*j)). For example: a(5,3) = binomial(5,5)*2^5 - binomial(2,1)*2^1 = 28. The generating function of the (k+1)-th column satisfies: psi(k)(z)=1/(1-2*z+z^(k+1)) (for k=0 we have the known result psi(0)(z)=1/(1-z)). - Richard Choulet, Jan 31 2010 [By saying "(k+1)-th column" the author actually means "k-th column" for k = 0, 1, 2, ... - Petros Hadjicostas, Jul 26 2019]
EXAMPLE
Triangle begins:
n\k|....0....1....2....3....4....5....6....7....8....9...10
---|-------------------------------------------------------
0..|....1
1..|....1....1
2..|....1....2....1
3..|....1....3....2....1
4..|....1....4....4....2....1
5..|....1....5....7....4....2....1
6..|....1....6...12....8....4....2....1
7..|....1....7...20...15....8....4....2....1
8..|....1....8...33...28...16....8....4....2....1
9..|....1....9...54...52...31...16....8....4....2....1
10.|....1...10...88...96...60...32...16....8....4....2....1
MAPLE
for k from 0 to 20 do for n from 0 to 20 do b(n):=sum((-1)^j*binomial(n-k*j, n-(k+1)*j)*2^(n-(k+1)*j), j=0..floor(n/(k+1))):od: seq(b(n), n=0..20):od; # Richard Choulet, Jan 31 2010
A172119 := proc(n, k)
option remember;
if k = 0 then
1;
elif k > n then
0;
else
1+add(procname(n-k+i, k), i=0..k-1) ;
end if;
end proc:
seq(seq(A172119(n, k), k=0..n), n=0..12) ; # R. J. Mathar, Sep 16 2017
MATHEMATICA
T[_, 0] = 1; T[n_, n_] = 1; T[n_, k_] /; k>n = 0; T[n_, k_] := T[n, k] = Sum[T[n-k+i, k], {i, 0, k-1}] + 1;
Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten
Table[Sum[(-1)^j*2^(n-k-(k+1)*j)*Binomial[n-k-k*j, n-k-(k+1)*j], {j, 0, Floor[(n-k)/(k+1)]}], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 27 2019 *)
PROG
(PARI) T(n, k) = if(k<0 || k>n, 0, k==1 && k==n, 1, 1 + sum(j=1, k, T(n-j, k)));
for(n=1, 12, for(k=0, n, print1(T(n, k), ", "))) \\ G. C. Greubel, Jul 27 2019
(Magma)
T:= func< n, k | (&+[(-1)^j*2^(n-k-(k+1)*j)*Binomial(n-k-k*j, n-k-(k+1)*j): j in [0..Floor((n-k)/(k+1))]]) >;
[[T(n, k): k in [0..n]]: n in [0..12]]; // G. C. Greubel, Jul 27 2019
(Sage)
@CachedFunction
def T(n, k):
if (k==0 and k==n): return 1
elif (k<0 or k>n): return 0
else: return 1 + sum(T(n-j, k) for j in (1..k))
[[T(n, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jul 27 2019
(GAP)
T:= function(n, k)
if k=0 and k=n then return 1;
elif k<0 or k>n then return 0;
else return 1 + Sum([1..k], j-> T(n-j, k));
fi;
end;
Flat(List([0..12], n-> List([0..n], k-> T(n, k) ))); # G. C. Greubel, Jul 27 2019
CROSSREFS
Cf. (1-((-1)^T(n, k)))/2 = A051731, see formula by Hieronymus Fischer in A022003.
KEYWORD
nonn,tabl
AUTHOR
Mats Granvik, Jan 26 2010
STATUS
approved
A184441 T(n,k)=Number of strings of numbers x(i=1..n) in 0..k with sum i*x(i)^2 equal to n*k^2 +30
15
1, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 2, 5, 3, 1, 1, 3, 5, 8, 4, 1, 1, 5, 10, 19, 17, 5, 1, 1, 5, 14, 32, 51, 31, 6, 1, 1, 5, 15, 39, 116, 130, 63, 8, 1, 2, 3, 14, 92, 238, 368, 359, 129, 10, 1, 1, 5, 28, 101, 436, 915, 1235, 946, 244, 12, 1, 1, 10, 23, 146, 715, 1993, 3532, 4321, 2333 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,6
COMMENTS
Table starts
..1...1....1.....1.....1......1......1.......1.......1.......1........1
..1...1....1.....1.....1......1......1.......1.......2.......1........1
..2...3....2.....3.....5......5......5.......3.......5......10........5
..2...5....5....10....14.....15.....14......28......23......46.......36
..3...8...19....32....39.....92....101.....146.....255.....255......315
..4..17...51...116...238....436....715....1160....1829....2466.....3591
..5..31..130...368...915...1993...3818....6805...11052...18352....28860
..6..63..359..1235..3532...9478..19257...38560...77476..126541...210018
..8.129..946..4321.15165..43638.109623..248861..513211..997735..1828762
.10.244.2333.13396.56094.187235.541179.1376999.3121413.6729888.13453502
LINKS
EXAMPLE
Some solutions for n=6 k=5
..4....5....3....5....1....5....4....2....2....1....1....3....3....5....5....4
..2....2....2....0....1....1....2....2....5....4....3....5....5....4....4....1
..5....2....3....0....2....5....1....4....2....3....0....3....5....1....2....2
..0....3....5....0....1....1....4....4....1....2....0....4....2....1....3....2
..3....3....0....5....5....2....1....2....4....2....5....0....0....4....3....4
..1....2....1....0....1....2....3....1....0....3....1....0....0....1....0....2
CROSSREFS
Column 1 is A000009
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Jan 14 2011
STATUS
approved
A343658 Array read by antidiagonals where A(n,k) is the number of ways to choose a multiset of k divisors of n. +30
14
1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 3, 3, 1, 1, 5, 4, 6, 2, 1, 1, 6, 5, 10, 3, 4, 1, 1, 7, 6, 15, 4, 10, 2, 1, 1, 8, 7, 21, 5, 20, 3, 4, 1, 1, 9, 8, 28, 6, 35, 4, 10, 3, 1, 1, 10, 9, 36, 7, 56, 5, 20, 6, 4, 1, 1, 11, 10, 45, 8, 84, 6, 35, 10, 10, 2, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
First differs from A343656 at A(4,2) = 6, A343656(4,2) = 5.
As a triangle, T(n,k) = number of ways to choose a multiset of n - k divisors of k.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (first 50 antidiagonals)
FORMULA
A(n,k) = ((A000005(n), k)) = A007318(A000005(n) + k - 1, k).
T(n,k) = ((A000005(k), n - k)) = A007318(A000005(k) + n - k - 1, n - k).
EXAMPLE
Array begins:
k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8
n=1: 1 1 1 1 1 1 1 1 1
n=2: 1 2 3 4 5 6 7 8 9
n=3: 1 2 3 4 5 6 7 8 9
n=4: 1 3 6 10 15 21 28 36 45
n=5: 1 2 3 4 5 6 7 8 9
n=6: 1 4 10 20 35 56 84 120 165
n=7: 1 2 3 4 5 6 7 8 9
n=8: 1 4 10 20 35 56 84 120 165
n=9: 1 3 6 10 15 21 28 36 45
Triangle begins:
1
1 1
1 2 1
1 3 2 1
1 4 3 3 1
1 5 4 6 2 1
1 6 5 10 3 4 1
1 7 6 15 4 10 2 1
1 8 7 21 5 20 3 4 1
1 9 8 28 6 35 4 10 3 1
1 10 9 36 7 56 5 20 6 4 1
1 11 10 45 8 84 6 35 10 10 2 1
For example, row n = 6 counts the following multisets:
{1,1,1,1,1} {1,1,1,1} {1,1,1} {1,1} {1} {}
{1,1,1,2} {1,1,3} {1,2} {5}
{1,1,2,2} {1,3,3} {1,4}
{1,2,2,2} {3,3,3} {2,2}
{2,2,2,2} {2,4}
{4,4}
Note that for n = 6, k = 4 in the triangle, the two multisets {1,4} and {2,2} represent the same divisor 4, so they are only counted once under A343656(4,2) = 5.
MATHEMATICA
multchoo[n_, k_]:=Binomial[n+k-1, k];
Table[multchoo[DivisorSigma[0, k], n-k], {n, 10}, {k, n}]
PROG
(PARI) A(n, k) = binomial(numdiv(n) + k - 1, k)
{ for(n=1, 9, for(k=0, 8, print1(A(n, k), ", ")); print ) } \\ Andrew Howroyd, Jan 11 2024
CROSSREFS
Row k = 1 of the array is A000005.
Column n = 4 of the array is A000217.
Column n = 6 of the array is A000292.
Row k = 2 of the array is A184389.
The distinct products of these multisets are counted by A343656.
Antidiagonal sums of the array (or row sums of the triangle) are A343661.
A000312 = n^n.
A009998(n,k) = n^k (as an array, offset 1).
A007318 counts k-sets of elements of {1..n}.
A059481 counts k-multisets of elements of {1..n}.
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Apr 29 2021
STATUS
approved
A194005 Triangle of the coefficients of an (n+1)-th order differential equation associated with A103631. +30
11
1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 3, 3, 1, 1, 5, 4, 6, 3, 1, 1, 6, 5, 10, 6, 4, 1, 1, 7, 6, 15, 10, 10, 4, 1, 1, 8, 7, 21, 15, 20, 10, 5, 1, 1, 9, 8, 28, 21, 35, 20, 15, 5, 1, 1, 10, 9, 36, 28, 56, 35, 35, 15, 6, 1, 1, 11, 10, 45, 36, 84, 56, 70, 35, 21, 6, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
This triangle is a companion to Parks' triangle A103631.
The coefficients of triangle A103631(n,k) appear in appendix 2 of Park’s remarkable article “A new proof of the Routh-Hurwitz stability criterion using the second method of Liapunov” if we assume that the b(n) coefficients are all equal to 1, see the second Maple program.
The a(n,k) coefficients of the triangle given above are related to the coefficients of a linear (n+1)-th order differential equation for the case b(n)=1, see the examples.
a(n,k) is also the number of symmetric binary strings of odd length n with Hamming weight k>0 and no consecutive 1's. - Christian Barrientos and Sarah Minion, Feb 27 2018
LINKS
Henry W. Gould, A Variant of Pascal's Triangle , The Fibonacci Quarterly, Vol. 3, Nr. 4, Dec. 1965, p. 257-271.
P.C. Parks, A new proof of the Routh-Hurwitz stability criterion using the second method of Liapunov , Math. Proc. of the Cambridge Philosophical Society, Vol. 58, Issue 04 (1962) p. 694-702.
Chris Zheng, Jeffrey Zheng, Triangular Numbers and Their Inherent Properties, Variant Construction from Theoretical Foundation to Applications, Springer, Singapore, 51-65.
FORMULA
a(n,k) = binomial(floor((2*n+1-k)/2), n-k).
a(n,k) = sum(A103631(n1,k), n1=k..n), 0<=k<=n and n>=0.
a(n,k) = sum(binomial(floor((2*n1-k-1)/2), n1-k), n1=k..n).
T(n,0) = T(n,n) = 1, T(n,k) = T(n-2,k-2) + T(n-1,k), 0 < k < n. - Reinhard Zumkeller, Nov 23 2012
EXAMPLE
For the 5th-order linear differential equation the coefficients a(k) are: a(0) = 1, a(1) = a(4,0) = 1, a(2) = a(4,1) = 4, a(3) = a(4,2) = 3, a(4) = a(4,3) = 3 and a(5) = a(4,4) = 1.
The corresponding Hurwitz matrices A(k) are, see Parks: A(5) = Matrix([[a(1),a(0),0,0,0], [a(3),a(2),a(1),a(0),0], [a(5),a(4),a(3),a(2),a(1)], [0,0,a(5),a(4),a(3)], [0,0,0,0,a(5)]]), A(4) = Matrix([[a(1),a(0),0,0], [a(3),a(2),a(1),a(0)], [a(5),a(4),a(3),a(2)], [0,0,a(5),a(4)]]), A(3) = Matrix([[a(1),a(0),0], [a(3),a(2),a(1)], [a(5),a(4),a(3)]]), A(2) = Matrix([[a(1),a(0)], [a(3),a(2)]]) and A(1) = Matrix([[a(1)]]).
The values of b(k) are, see Parks: b(1) = d(1), b(2) = d(2)/d(1), b(3) = d(3)/(d(1)*d(2)), b(4) = d(1)*d(4)/(d(2)*d(3)) and b(5) = d(2)*d(5)/(d(3)*d(4)).
These a(k) values lead to d(k) = 1 and subsequently to b(k) = 1 and this confirms our initial assumption, see the comments.
'
Triangle starts:
[0] 1;
[1] 1, 1;
[2] 1, 2, 1;
[3] 1, 3, 2, 1;
[4] 1, 4, 3, 3, 1;
[5] 1, 5, 4, 6, 3, 1;
[6] 1, 6, 5, 10, 6, 4, 1;
[7] 1, 7, 6, 15, 10, 10, 4, 1;
[8] 1, 8, 7, 21, 15, 20, 10, 5, 1;
[9] 1, 9, 8, 28, 21, 35, 20, 15, 5, 1;
MAPLE
A194005 := proc(n, k): binomial(floor((2*n+1-k)/2), n-k) end:
for n from 0 to 11 do seq(A194005(n, k), k=0..n) od;
seq(seq(A194005(n, k), k=0..n), n=0..11);
nmax:=11: for n from 0 to nmax+1 do b(n):=1 od:
A103631 := proc(n, k) option remember: local j: if k=0 and n=0 then b(1)
elif k=0 and n>=1 then 0 elif k=1 then b(n+1) elif k=2 then b(1)*b(n+1)
elif k>=3 then expand(b(n+1)*add(procname(j, k-2), j=k-2..n-2)) fi: end:
for n from 0 to nmax do for k from 0 to n do
A194005(n, k):= add(A103631(n1, k), n1=k..n) od: od:
seq(seq(A194005(n, k), k=0..n), n=0..nmax);
MATHEMATICA
Flatten[Table[Binomial[Floor[(2n+1-k)/2], n-k], {n, 0, 20}, {k, 0, n}]] (* Harvey P. Dale, Apr 15 2012 *)
PROG
(Haskell)
a194005 n k = a194005_tabl !! n !! k
a194005_row n = a194005_tabl !! n
a194005_tabl = [1] : [1, 1] : f [1] [1, 1] where
f row' row = rs : f row rs where
rs = zipWith (+) ([0, 1] ++ row') (row ++ [0])
-- Reinhard Zumkeller, Nov 22 2012
CROSSREFS
Cf. A065941 and A103631.
Triangle sums (see A180662): A000071 (row sums; alt row sums), A075427 (Kn22), A000079 (Kn3), A109222(n+1)-1 (Kn4), A000045 (Fi1), A034943 (Ca3), A001519 (Gi3), A000930 (Ze3)
Interesting diagonals: T(n,n-4) = A189976(n+5) and T(n,n-5) = A189980(n+6)
Cf. A052509.
KEYWORD
nonn,easy,tabl
AUTHOR
Johannes W. Meijer & A. Hirschberg (a.hirschberg(AT)tue.nl), Aug 11 2011
STATUS
approved
A112739 Array counting nodes in rooted trees of height n in which the root and internal nodes have valency k (and the leaf nodes have valency one). +30
10
1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 4, 5, 2, 1, 1, 5, 10, 7, 2, 1, 1, 6, 17, 22, 9, 2, 1, 1, 7, 26, 53, 46, 11, 2, 1, 1, 8, 37, 106, 161, 94, 13, 2, 1, 1, 9, 50, 187, 426, 485, 190, 15, 2, 1, 1, 10, 65, 302, 937, 1706, 1457, 382, 17, 2, 1, 1, 11, 82, 457, 1814, 4687, 6826, 4373, 766, 19 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
Rows of the square array have g.f. (1+x)/((1-x)(1-kx)). They are the partial sums of the coordination sequences for the infinite tree of valency k. Row sums are A112740.
Rows of the square array are successively: A000012, A040000, A005408, A033484, A048473, A020989, A057651, A061801, A238275, A238276, A138894, A090843, A199023. - Philippe Deléham, Feb 22 2014
REFERENCES
L. He, X. Liu and G. Strang, (2003) Trees with Cantor Eigenvalue Distribution. Studies in Applied Mathematics 110 (2), 123-138.
L. He, X. Liu and G. Strang, Laplacian eigenvalues of growing trees, Proc. Conf. on Math. Theory of Networks and Systems, Perpignan (2000).
LINKS
FORMULA
As a square array read by antidiagonals, T(n, k)=sum{j=0..k, (2-0^j)*(n-1)^(k-j)}; T(n, k)=(n(n-1)^k-2)/(n-2), n<>2, T(2, n)=2n+1; T(n, k)=sum{j=0..k, (n(n-1)^j-0^j)/(n-1)}, j<>1. As a triangle read by rows, T(n, k)=if(k<=n, sum{j=0..k, (2-0^j)*(n-k-1)^(k-j)}, 0).
EXAMPLE
As a square array, rows begin
1,1,1,1,1,1,... (A000012)
1,2,2,2,2,2,... (A040000)
1,3,5,7,9,11,... (A005408)
1,4,10,22,46,94,... (A033484)
1,5,17,53,161,485,... (A048473)
1,6,26,106,426,1706,... (A020989)
1,7,37,187,937,4687,... (A057651)
1,8,50,302,1814,10886,... (A061801)
As a number triangle, rows start
1;
1,1;
1,2,1;
1,3,2,1;
1,4,5,2,1;
1,5,10,7,2,1;
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Paul Barry, Sep 16 2005
STATUS
approved
page 1 2 3 4 5 6

Search completed in 0.011 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 12 16:36 EDT 2024. Contains 375853 sequences. (Running on oeis4.)