login
A343526
Number of divisors of n^7.
2
1, 8, 8, 15, 8, 64, 8, 22, 15, 64, 8, 120, 8, 64, 64, 29, 8, 120, 8, 120, 64, 64, 8, 176, 15, 64, 22, 120, 8, 512, 8, 36, 64, 64, 64, 225, 8, 64, 64, 176, 8, 512, 8, 120, 120, 64, 8, 232, 15, 120, 64, 120, 8, 176, 64, 176, 64, 64, 8, 960, 8, 64, 120, 43, 64, 512, 8, 120, 64, 512, 8
OFFSET
1,2
LINKS
FORMULA
a(n) = A000005(A001015(n)).
Multiplicative with a(p^e) = 7*e+1.
a(n) = Sum_{d|n} 7^omega(d).
G.f.: Sum_{k>=1} 7^omega(k) * x^k/(1 - x^k).
Dirichlet g.f.: zeta(s)^2 * Product_{primes p} (1 + 6/p^s). - Vaclav Kotesovec, Aug 19 2021
MATHEMATICA
Table[DivisorSigma[0, n^7], {n, 1, 100}] (* Amiram Eldar, May 15 2021 *)
PROG
(PARI) a(n) = numdiv(n^7);
(PARI) a(n) = prod(k=1, #f=factor(n)[, 2], 7*f[k]+1);
(PARI) a(n) = sumdiv(n, d, 7^omega(d));
(PARI) my(N=99, x='x+O('x^N)); Vec(sum(k=1, N, 7^omega(k)*x^k/(1-x^k)))
(PARI) for(n=1, 100, print1(direuler(p=2, n, (1 + 6*X)/(1 - X)^2)[n], ", ")) \\ Vaclav Kotesovec, Aug 19 2021
CROSSREFS
Column k=7 of A343656.
Sequence in context: A329822 A226835 A363326 * A335896 A168337 A109540
KEYWORD
nonn,mult
AUTHOR
Seiichi Manyama, May 15 2021
STATUS
approved