login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226835
Triangle whose n-th row has the smallest n 3-almost primes in an arithmetic progression.
1
8, 8, 12, 12, 20, 28, 20, 44, 68, 92, 20, 44, 68, 92, 116, 402, 410, 418, 426, 434, 442, 266, 370, 474, 578, 682, 786, 890, 266, 370, 474, 578, 682, 786, 890, 994, 1270, 1414, 1558, 1702, 1846, 1990, 2134, 2278, 2422, 1394, 1586, 1778, 1970, 2162, 2354, 2546, 2738, 2930, 3122
OFFSET
1,1
COMMENTS
Note that this triangle (at least for all n <= 29) is twice A226833, which is the similar triangle of semiprimes.
EXAMPLE
Triangle:
8,
8, 12,
12, 20, 28,
20, 44, 68, 92,
20, 44, 68, 92, 116,
402, 410, 418, 426, 434, 442,
266, 370, 474, 578, 682, 786, 890,
266, 370, 474, 578, 682, 786, 890, 994,
1270, 1414, 1558, 1702, 1846, 1990, 2134, 2278, 2422,
1394, 1586, 1778, 1970, 2162, 2354, 2546, 2738, 2930, 3122
MATHEMATICA
TriPrimeQ[n_Integer] := If[Abs[n] < 2, False, (3 == Plus @@ Transpose[FactorInteger[Abs[n]]][[2]])]; p3 = Select[Range[4000], TriPrimeQ]; nn = Length[p3]; t = {}; n = 0; last = 1; While[n++; found = False; last = n; While[k = last - 1; p3Short = Take[p3, last]; While[d = p3[[last]] - p3[[k]]; nums = Table[p3[[last]] - i*d, {i, 0, n - 1}]; int = Intersection[nums, p3Short]; nums[[-1]] > 0 && Length[int] < n, k--]; nums[[-1]] <= 0 && last < nn, last++]; If[last < nn, AppendTo[t, Reverse[nums]]]; last < nn]; t
CROSSREFS
Cf. A226833 (similar triangle of semiprimes).
Sequence in context: A219236 A259532 A329822 * A363326 A343526 A335896
KEYWORD
nonn,tabl
AUTHOR
T. D. Noe and Jonathan Vos Post, Jun 30 2013
STATUS
approved