login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226836
Squares s such that first m and last m digits of the binary representation are perfect positive squares written in binary, and m = floor(binaryLength(s)/2), where binaryLength(s) = A070939(s) is the binary length of s.
1
36, 289, 4624, 10404, 115600, 248004, 1083681, 1281424, 2232036, 2509056, 21307456, 23892544, 31494544, 40144896, 66357316, 271359729, 340919296, 479785216, 512026384, 597215844, 767068416, 4831918144, 5454708736, 8126661904, 8522982400, 12273094656, 16705045504
OFFSET
1,1
COMMENTS
The sequence of roots of a(n) begins: 6, 17, 68, 102, 340, 498, 1041, 1132, 1494, 1584, 4616, 4888, 5612, 6336, 8146, 16473, 18464, 21904, 22628, 24438, 27696, 69512, 73856, 90148, 92320, ...
PROG
(C)
#include <stdio.h>
#include <math.h>
typedef unsigned long long U64;
U64 isSquare(U64 a) {
U64 s = sqrt(a);
return (s*s==a);
}
int main() {
U64 i, j, n, sq, s, S;
for (n = 1; n < (1ULL<<20); ++n) {
for (i = 64, j = sq = n*n; j < (1ULL<<63); j += j)
--i; // binary length of sq
j = i >> 1; // Sbs or Ss, binary length of s is j
s = sq & ((1ULL<<j)-1);
S = sq >> (j+(i&1));
if (isSquare(S) && s && isSquare(s)) printf("%llu, ", sq);
}
return 0;
}
CROSSREFS
Sequence in context: A288963 A091081 A017462 * A218647 A067741 A374503
KEYWORD
nonn,base,less
AUTHOR
Alex Ratushnyak, Jun 19 2013
STATUS
approved