The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A226836 Squares s such that first m and last m digits of the binary representation are perfect positive squares written in binary, and m = floor(binaryLength(s)/2), where binaryLength(s) = A070939(s) is the binary length of s. 1
 36, 289, 4624, 10404, 115600, 248004, 1083681, 1281424, 2232036, 2509056, 21307456, 23892544, 31494544, 40144896, 66357316, 271359729, 340919296, 479785216, 512026384, 597215844, 767068416, 4831918144, 5454708736, 8126661904, 8522982400, 12273094656, 16705045504 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS The sequence of roots of a(n) begins: 6, 17, 68, 102, 340, 498, 1041, 1132, 1494, 1584, 4616, 4888, 5612, 6336, 8146, 16473, 18464, 21904, 22628, 24438, 27696, 69512, 73856, 90148, 92320, ... LINKS PROG (C) #include #include typedef unsigned long long U64; U64 isSquare(U64 a) {     U64 s = sqrt(a);     return (s*s==a); } int main() {   U64 i, j, n, sq, s, S;   for (n = 1; n < (1ULL<<20); ++n) {     for (i = 64, j = sq = n*n; j < (1ULL<<63); j += j)       --i;  // binary length of sq     j = i >> 1;  //  Sbs or Ss, binary length of s is j     s = sq & ((1ULL<> (j+(i&1));     if (isSquare(S) && s && isSquare(s)) printf("%llu, ", sq);   }   return 0; } CROSSREFS Cf. A070939, A226736. Sequence in context: A288963 A091081 A017462 * A218647 A067741 A185096 Adjacent sequences:  A226833 A226834 A226835 * A226837 A226838 A226839 KEYWORD nonn,base,less AUTHOR Alex Ratushnyak, Jun 19 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 15 22:02 EDT 2021. Contains 343932 sequences. (Running on oeis4.)