login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A226837 E.g.f.: exp( Sum_{n>=1} x^(2*n) / n^2 )  =  Sum_{n>=0} a(n)*x^(2*n)/(2*n)!. 3
1, 2, 18, 380, 14980, 969192, 94438344, 13027041456, 2427908305680, 589565047637280, 181202801029384992, 68849741925654266304, 31716559209036029729856, 17426989484519712174940800, 11263849940254797456755356800, 8462659472067485322490892440320 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Sum_{n>=0} a(n)/(2*n)! = exp(Pi^2/6) = 5.1806683178971...

LINKS

Vaclav Kotesovec, Table of n, a(n) for n = 0..224

EXAMPLE

E.g.f.: A(x) = 1 + 2*x^2/2! + 18*x^4/4! + 380*x^6/6! + 14980*x^8/8! +...

where

log(A(x)) = x^2 + x^4/4 + x^6/9 + x^8/16 + x^10/25 + x^12/36 + x^14/49 +...

MATHEMATICA

nmax=20; k=2; Table[(CoefficientList[Series[Exp[PolyLog[k, x^k]], {x, 0, k*nmax}], x] * Range[0, k*nmax]!)[[k*n-k+1]], {n, 1, nmax+1}] (* Vaclav Kotesovec, Jun 21 2015 *)

PROG

(PARI) {a(n)=(2*n)!*polcoeff(exp(sum(m=1, n, (x^m/m)^2)+x*O(x^(2*n))), 2*n)}

for(n=0, 20, print1(a(n), ", "))

CROSSREFS

Cf. A258873, A258874.

Sequence in context: A132911 A291902 A336217 * A152684 A201732 A260656

Adjacent sequences:  A226834 A226835 A226836 * A226838 A226839 A226840

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Jun 19 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 26 09:59 EST 2022. Contains 358356 sequences. (Running on oeis4.)