login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132911
a(n) = (n+1)*(2*n)!/2^n.
1
1, 2, 18, 360, 12600, 680400, 52390800, 5448643200, 735566832000, 125046361440000, 26134689540960000, 6585941764321920000, 1969196587532254080000, 689218805636288928000000, 279133616282697015840000000, 129517997955171415349760000000, 68255984922375335889323520000000
OFFSET
0,2
COMMENTS
Define T(n,k)=((1+(-1)^n)/2)*C(k-1+n/2, n/2)*n!/2^(n/2). Then T(n,k) has e.g.f. 1/sum{j=0..k, C(k,j)*(-1)^j*x^(2j)/2^j}. T(n,1) is A000680 with interpolated zeros. T(n,3) is A132912.
LINKS
Daniele Marchei, Emanuela Merelli, and Andrew Francis, Factorizing the Brauer monoid in polynomial time, arXiv:2402.07874 [math.RA], 2024. See p. 24.
FORMULA
E.g.f.: 1/(1-x^2+x^4/4) (with interpolated zeros);
a(n)-(n+1)*(2*n-1)*a(n-1)=0. - R. J. Mathar, Nov 05 2012
MATHEMATICA
Table[(n+1) (2n)!/2^n, {n, 0, 20}] (* Harvey P. Dale, Jun 02 2020 *)
CROSSREFS
Sequence in context: A123311 A349881 A181536 * A291902 A336217 A226837
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 04 2007
STATUS
approved