login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181536
G.f.: A(x) = x*exp( Sum_{n>=1} A(2^(n^2)*x^n)/n ).
1
1, 2, 18, 348, 22998, 7497180, 11948631604, 81974855239480, 2326992693663022694, 269846257532329078280364, 127041922315653022761148802396, 241938253359964848636177506896485640
OFFSET
1,2
COMMENTS
Compare g.f. to that of A000081 (number of rooted trees with n nodes):
* G(x) = x*exp( Sum_{n>=1} G(x^n)/n ).
EXAMPLE
G.f.: A(x) = 1 + 2*x + 18*x^2 + 348*x^3 + 22998*x^4 + 7497180*x^5 +...
A(x) = x*exp(A(2*x) + A(2^4*x^2)/2 + A(2^9*x^3)/3 + A(2^16*x^4)/4 +...).
PROG
(PARI) {a(n)=local(A=x+2*x^2); for(i=1, n, A=x*exp(sum(m=1, n, subst(A, x, 2^(m^2)*x^m+x*O(x^n))/m))); polcoeff(A, n)}
CROSSREFS
Cf. A181535.
Sequence in context: A090307 A123311 A349881 * A132911 A291902 A336217
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 30 2010
STATUS
approved