login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A132912
a(n)=C(n+2,2)(2n)!/2^n.
1
1, 3, 36, 900, 37800, 2381400, 209563200, 24518894400, 3677834160000, 687754987920000, 156808137245760000, 42808621468092480000, 13784376112725778560000, 5169141042272166960000000, 2233068930261576126720000000, 1100902982618957030472960000000
OFFSET
0,2
COMMENTS
Define T(n,k)=((1+(-1)^n)/2)*C(k-1+n/2, n/2)*n!/2^(n/2). Then T(n,k) has e.g.f. 1/sum{j=0..k, C(k,j)*(-1)^j*x^(2j)/2^j}. T(n,1) is A000680 with interpolated zeros. T(n,2) is A132911.
FORMULA
E.g.f.: 1/(1-(3/2)x^2+(3/4)x^4-(1/8)x^6) (with interpolated zeros);
a(n) -(n+2)*(2*n-1)*a(n-1)=0. - R. J. Mathar, Nov 05 2012
MATHEMATICA
Table[(Binomial[n+2, 2](2n)!)/2^n, {n, 0, 20}] (* Harvey P. Dale, Sep 18 2011 *)
CROSSREFS
Sequence in context: A326273 A224006 A004824 * A303866 A126447 A102921
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Sep 04 2007
EXTENSIONS
More terms from Harvey P. Dale, Sep 18 2011
STATUS
approved