Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Aug 06 2024 15:19:50
%S 1,2,18,360,12600,680400,52390800,5448643200,735566832000,
%T 125046361440000,26134689540960000,6585941764321920000,
%U 1969196587532254080000,689218805636288928000000,279133616282697015840000000,129517997955171415349760000000,68255984922375335889323520000000
%N a(n) = (n+1)*(2*n)!/2^n.
%C Define T(n,k)=((1+(-1)^n)/2)*C(k-1+n/2, n/2)*n!/2^(n/2). Then T(n,k) has e.g.f. 1/sum{j=0..k, C(k,j)*(-1)^j*x^(2j)/2^j}. T(n,1) is A000680 with interpolated zeros. T(n,3) is A132912.
%H Daniele Marchei, Emanuela Merelli, and Andrew Francis, <a href="https://arxiv.org/abs/2402.07874">Factorizing the Brauer monoid in polynomial time</a>, arXiv:2402.07874 [math.RA], 2024. See p. 24.
%F E.g.f.: 1/(1-x^2+x^4/4) (with interpolated zeros);
%F a(n)-(n+1)*(2*n-1)*a(n-1)=0. - _R. J. Mathar_, Nov 05 2012
%t Table[(n+1) (2n)!/2^n,{n,0,20}] (* _Harvey P. Dale_, Jun 02 2020 *)
%Y Cf. A000680, A132912.
%K easy,nonn
%O 0,2
%A _Paul Barry_, Sep 04 2007