login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A201732 a(n) = [x^n/n!] (1/x) * log( (n+1 - n*exp(x)) / (n+2 - (n+1)*exp(x)) ). 1
1, 2, 18, 386, 15150, 946082, 86148762, 10776331778, 1773210244230, 371367615732002, 96462262816769586, 30433572793375652738, 11463680237091180885150, 5081782052880868302982562, 2618864991559576227420716490, 1552537179057766207300655437826 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The function log((n+1 - n*exp(x))/(n+2 - (n+1)*exp(x))) equals the (n+1)-th iteration of log(1/(2-exp(x)), the e.g.f. of A000629 (with offset 1), where A000629(n) is the number of necklaces of partitions of n+1 labeled beads.

LINKS

Table of n, a(n) for n=0..15.

FORMULA

a(n) = A201731(n+1) / (n+1).

PROG

(PARI) {a(n)=n!*polcoeff((1/x)*log((n+1 - n*exp(x+O(x^(n+2))))/(n+2 - (n+1)*exp(x+O(x^(n+2))))), n)}

CROSSREFS

Cf. A201731, A000629.

Sequence in context: A291902 A226837 A152684 * A260656 A141074 A082402

Adjacent sequences:  A201729 A201730 A201731 * A201733 A201734 A201735

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Dec 04 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 19 01:00 EST 2020. Contains 332028 sequences. (Running on oeis4.)