login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A201735 Decimal expansion of least x satisfying x^2 - 3 = csc(x) and 0<x<Pi. 3
2, 0, 2, 8, 4, 7, 9, 6, 1, 0, 6, 8, 5, 8, 1, 5, 7, 3, 6, 5, 9, 5, 8, 3, 9, 4, 0, 5, 8, 4, 0, 7, 4, 1, 9, 6, 0, 3, 3, 0, 1, 0, 6, 7, 3, 2, 3, 1, 8, 4, 9, 2, 2, 9, 6, 3, 9, 7, 0, 7, 7, 8, 1, 6, 0, 4, 3, 2, 4, 8, 1, 1, 9, 1, 7, 0, 0, 5, 7, 5, 3, 8, 3, 2, 3, 7, 7, 0, 4, 8, 3, 3, 3, 7, 3, 3, 6, 2, 2 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

See A201564 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

EXAMPLE

least:  2.028479610685815736595839405840741960330...

greatest:  2.968711981161412446755404392723943506...

MATHEMATICA

a = 1; c = -3;

f[x_] := a*x^2 + c; g[x_] := Csc[x]

Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, 2.0, 2.1}, WorkingPrecision -> 110]

RealDigits[r]   (* A201735 *)

r = x /. FindRoot[f[x] == g[x], {x, 2.9, 3.0}, WorkingPrecision -> 110]

RealDigits[r]   (* A201736 *)

PROG

(PARI) a=1; c=-3; solve(x=2, 2.5, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Sep 12 2018

CROSSREFS

Cf. A201564.

Sequence in context: A274541 A301772 A021497 * A029593 A196504 A182550

Adjacent sequences:  A201732 A201733 A201734 * A201736 A201737 A201738

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Dec 04 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 08:10 EDT 2021. Contains 348066 sequences. (Running on oeis4.)