login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A201737 Decimal expansion of least x satisfying x^2 - 4 = csc(x) and 0<x<Pi. 3
2, 3, 1, 5, 0, 4, 6, 9, 3, 3, 6, 1, 7, 3, 7, 4, 8, 1, 7, 6, 7, 1, 5, 7, 6, 2, 6, 2, 7, 1, 9, 1, 9, 4, 3, 5, 0, 8, 0, 8, 1, 6, 2, 2, 4, 1, 0, 9, 8, 6, 8, 7, 3, 2, 8, 6, 1, 0, 7, 3, 8, 5, 8, 9, 6, 0, 4, 4, 1, 8, 1, 1, 4, 9, 2, 2, 8, 2, 2, 3, 1, 2, 8, 4, 3, 4, 1, 5, 6 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

See A201564 for a guide to related sequences.  The Mathematica program includes a graph.

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..10000

EXAMPLE

least:  2.31504693361737481767157626271919435080...

greatest:  2.91834369901820138765983699207605876...

MATHEMATICA

a = 1; c = -4;

f[x_] := a*x^2 + c; g[x_] := Csc[x]

Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]

r = x /. FindRoot[f[x] == g[x], {x, 2.3, 2.4}, WorkingPrecision -> 110]

RealDigits[r]   (* A201737 *)

r = x /. FindRoot[f[x] == g[x], {x, 2.9, 3.0}, WorkingPrecision -> 110]

RealDigits[r]   (* A201738 *)

PROG

(PARI) a=1; c=-4; solve(x=2, 2.5, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Sep 12 2018

CROSSREFS

Cf. A201564.

Sequence in context: A264560 A300625 A264638 * A080063 A187680 A328731

Adjacent sequences:  A201734 A201735 A201736 * A201738 A201739 A201740

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Dec 04 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 20 20:15 EDT 2022. Contains 353876 sequences. (Running on oeis4.)