login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A300625
Table of row functions R(n,x) that satisfy: [x^k] exp( k^n * R(n,x) ) = k^n * [x^(k-1)] exp( k^n * R(n,x) ) for k>=1, n>=1, read by antidiagonals.
1
1, 1, 1, 1, 2, 3, 1, 4, 27, 14, 1, 8, 243, 736, 85, 1, 16, 2187, 40448, 30525, 621, 1, 32, 19683, 2351104, 12519125, 1715454, 5236, 1, 64, 177147, 142475264, 6153518125, 6111917748, 123198985, 49680, 1, 128, 1594323, 8856272896, 3436799053125, 31779658925496, 4308276119854, 10931897664, 521721, 1, 256, 14348907, 558312194048, 2049047412828125, 212148041589128016, 287364845865893467, 4151360558858752, 1172808994833, 5994155
OFFSET
1,5
EXAMPLE
This table of coefficients T(n,k) begins:
n=1: [1, 1, 3, 14, 85, 621, 5236, 49680, ...];
n=2: [1, 2, 27, 736, 30525, 1715454, 123198985, 10931897664, ...];
n=3: [1, 4, 243, 40448, 12519125, 6111917748, 4308276119854, ..];
n=4: [1, 8, 2187, 2351104, 6153518125, 31779658925496, ...];
n=5: [1, 16, 19683, 142475264, 3436799053125, 212148041589128016, ...];
n=6: [1, 32, 177147, 8856272896, 2049047412828125, 1569837215111038900704, ...];
n=7: [1, 64, 1594323, 558312194048, 1256793474918203125, 12020665333382306853887808, ...]; ...
such that row functions R(n,x) = Sum_{k>=1} T(n,k)*x^k satisfy:
[x^k] exp( k^n * R(n,x) ) = k^n * [x^(k-1)] exp( k^n * R(n,x) ) for k>=1.
Row functions R(n,x) begin:
R(1,x) = x + x^2 + 3*x^3 + 14*x^4 + 85*x^5 + 621*x^6 + 5236*x^7 + 49680*x^8 + ...
R(2,x) = x + 2*x^2 + 27*x^3 + 736*x^4 + 30525*x^5 + 1715454*x^6 + ...
R(3,x) = x + 4*x^2 + 243*x^3 + 40448*x^4 + 12519125*x^5 + 6111917748*x^6 + ...
R(4,x) = x + 8*x^2 + 2187*x^3 + 2351104*x^4 + 6153518125*x^5 + ...
etc.
PROG
(PARI) {T(n, k) = my(A=[1]); for(i=1, k+1, A=concat(A, 0); V=Vec(Ser(A)^((#A-1)^n)); A[#A] = ((#A-1)^n * V[#A-1] - V[#A])/(#A-1)^n ); polcoeff( log(Ser(A)), k)}
/* Print as a table of row functions: */
for(n=1, 8, for(k=1, 8, print1(T(n, k), ", ")); print(""))
/* Print as a flattened triangle: */
for(n=1, 12, for(k=1, n-1, print1(T(n-k, k), ", ")); )
CROSSREFS
Cf. A088716 (row 1), A300591 (row 2), A300595 (row 3), A300597 (row 4).
Sequence in context: A264659 A371295 A264560 * A264638 A201737 A080063
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Mar 12 2018
STATUS
approved