OFFSET
1,2
COMMENTS
Sequence has a fractal-like structure. Fibonacci numbers (A000045) are determinative for the generational boundaries.
LINKS
Altug Alkan, Table of n, a(n) for n = 1..28657
Altug Alkan, Line plot of a(n) for n <= 28657
Altug Alkan, Scatterplot of a(n) for n <= 75025
MAPLE
t:= proc(n) option remember; `if`(n<4, 1,
t(t(n-2)) +t(n-t(n-1)))
end:
b:= proc(n) option remember; `if`(n<2, 1,
n -b(t(n)) -b(n-t(n-1)))
end:
seq(2*b(n)-n, n=1..100); # after Alois P. Heinz at A317686
MATHEMATICA
t[1]=t[2]=t[3]=1; t[n_] := t[n] = t[t[n-2]] + t[n - t[n-1]]; b[1]=1; b[n_] := b[n] = n - b[t[n]] - b[n - t[n-1]]; a[n_] := 2*b[n] - n; Array[a, 95] (* after Giovanni Resta at A317854 *)
PROG
(PARI) t=vector(99); t[1]=t[2]=t[3]=1; for(n=4, #t, t[n] = t[n-t[n-1]]+t[t[n-2]]); b=vector(99); b[1]=1; for(n=2, #b, b[n] = n-b[t[n]]-b[n-t[n-1]]); vector(99, k, 2*b[k]-k)
CROSSREFS
KEYWORD
sign,look
AUTHOR
Altug Alkan, Aug 14 2018
STATUS
approved