login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Let b(1) = 1; for n >= 2, b(n) = n - b(t(n)) - b(n-t(n-1)) where t = A302128. a(n) = 2*b(n) - n.
1

%I #25 Sep 07 2018 03:15:06

%S 1,-2,1,0,1,-2,-1,-2,1,2,-1,0,1,0,1,-2,-1,2,3,2,1,-2,-1,-4,-3,2,3,0,1,

%T -4,-3,-4,-3,-2,1,2,-1,0,5,6,3,4,-5,-4,-7,-6,-3,-2,-3,2,3,2,3,2,1,0,1,

%U -2,-1,4,5,2,3,-8,-7,-10,-9,-4,-3,-6,-5,8,9,6,7,10,11,10,5,6,5,6,-1,0,-1,0,-1,0,1,-2,-1,-4,-3

%N Let b(1) = 1; for n >= 2, b(n) = n - b(t(n)) - b(n-t(n-1)) where t = A302128. a(n) = 2*b(n) - n.

%C Sequence has a fractal-like structure. Fibonacci numbers (A000045) are determinative for the generational boundaries.

%H Altug Alkan, <a href="/A300623/b300623.txt">Table of n, a(n) for n = 1..28657</a>

%H Altug Alkan, <a href="/A300623/a300623.png">Line plot of a(n) for n <= 28657</a>

%H Altug Alkan, <a href="/A300623/a300623_1.png">Scatterplot of a(n) for n <= 75025</a>

%p t:= proc(n) option remember; `if`(n<4, 1,

%p t(t(n-2)) +t(n-t(n-1)))

%p end:

%p b:= proc(n) option remember; `if`(n<2, 1,

%p n -b(t(n)) -b(n-t(n-1)))

%p end:

%p seq(2*b(n)-n, n=1..100); # after _Alois P. Heinz_ at A317686

%t t[1]=t[2]=t[3]=1; t[n_] := t[n] = t[t[n-2]] + t[n - t[n-1]]; b[1]=1; b[n_] := b[n] = n - b[t[n]] - b[n - t[n-1]]; a[n_] := 2*b[n] - n; Array[a, 95] (* after _Giovanni Resta_ at A317854 *)

%o (PARI) t=vector(99); t[1]=t[2]=t[3]=1; for(n=4, #t, t[n] = t[n-t[n-1]]+t[t[n-2]]); b=vector(99); b[1]=1; for(n=2, #b, b[n] = n-b[t[n]]-b[n-t[n-1]]); vector(99,k, 2*b[k]-k)

%Y Cf. A302128, A318056.

%K sign,look

%O 1,2

%A _Altug Alkan_, Aug 14 2018