OFFSET
1,1
COMMENTS
See A201564 for a guide to related sequences. The Mathematica program includes a graph.
There is a greatest number c for which x^2-c=csc(x) for some number x satisfying 0<x<pi. The number c is between 4 and 5.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..10000
EXAMPLE
least: 2.31504693361737481767157626271919435080...
greatest: 2.91834369901820138765983699207605876...
MATHEMATICA
a = 1; c = -4;
f[x_] := a*x^2 + c; g[x_] := Csc[x]
Plot[{f[x], g[x]}, {x, 0, Pi}, {AxesOrigin -> {0, 0}}]
r = x /. FindRoot[f[x] == g[x], {x, 2.3, 2.4}, WorkingPrecision -> 110]
RealDigits[r] (* A201737 *)
r = x /. FindRoot[f[x] == g[x], {x, 2.9, 3.0}, WorkingPrecision -> 110]
RealDigits[r] (* A201738 *)
PROG
(PARI) a=1; c=-4; solve(x=2.5, 3, a*x^2 + c - 1/sin(x)) \\ G. C. Greubel, Sep 12 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Dec 04 2011
STATUS
approved