login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A226137
Positions of the integers in the ordering of rational numbers as generated by the rules: 1 is in S, and if nonzero x is in S, then x+1 and -1/x are in S. (See Comments.)
4
1, 2, 3, 4, 6, 7, 10, 14, 15, 22, 32, 46, 47, 69, 101, 147, 148, 217, 318, 465, 466, 683, 1001, 1466, 1467, 2150, 3151, 4617, 4618, 6768, 9919, 14536, 14537, 21305, 31224, 45760, 45761, 67066, 98290, 144050, 144051, 211117, 309407, 453457, 453458
OFFSET
1,2
COMMENTS
Let S be the set of numbers defined by these rules: 1 is in S, and if nonzero x is in S, then x + 1 and -1/x are in S. Then S is the set of all rational numbers, produced in generations as follows: g(1) = (1), g(2) = (2, -1), g(3) = (3, -1/2, 0), g(4) = (4, -1/3, 1/2), ... For n > 4, once g(n-1) = (c(1), ..., c(z)) is defined, g(n) is formed from the vector (c(1)+1, -1/c(1), c(2)+1, -1/c(2), ..., c(z)+1, -1/c(z)) by deleting previously generated elements. Let S' denote the sequence formed by concatenating the generations.
A226130: Denominators of terms of S'
A226131: Numerators of terms of S'
A226136: Positions of positive integers in S'
A226137: Positions of integers in S'
LINKS
EXAMPLE
S'= (1/1, 2/1, -1/1, 3/1, -1/2, 0/1, 4/1, -1/3, 1/2, ...), with integers appearing in positions 1,2,3,4,6,7,...
MATHEMATICA
g[1] := {1}; z = 20; g[n_] := g[n] = DeleteCases[Flatten[Transpose[{# + 1, -1/#}]]&[DeleteCases[g[n - 1], 0]], Apply[Alternatives, Flatten[Map[g, Range[n - 1]]]]]; Flatten[Map[g, Range[7]]] (* ordered rationals *)
Map[g, Range[z]]; Table[Length[g[i]], {i, 1, z}] (* cf A003410 *)
f = Flatten[Map[g, Range[z]]];
Take[Denominator[f], 100] (* A226130 *)
Take[Numerator[f], 100] (* A226131 *)
p1 = Flatten[Table[Position[f, n], {n, 1, z}]] (* A226136 *)
p2 = Flatten[Table[Position[f, -n], {n, 0, z}]];
Union[p1, p2] (* A226137 *) (* Peter J. C. Moses, May 26 2013 *)
CROSSREFS
Cf. A226080 (rabbit ordering of positive rationals).
Sequence in context: A039854 A237752 A032480 * A355393 A163771 A194855
KEYWORD
nonn
AUTHOR
Clark Kimberling, May 28 2013
STATUS
approved