login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355737
Number of ways to choose a sequence of divisors, one of each prime index of n (with multiplicity), such that the result has no common divisor > 1.
28
0, 1, 1, 1, 1, 2, 1, 1, 3, 2, 1, 2, 1, 3, 4, 1, 1, 4, 1, 2, 4, 2, 1, 2, 3, 4, 7, 3, 1, 4, 1, 1, 4, 2, 6, 4, 1, 4, 6, 2, 1, 6, 1, 2, 8, 3, 1, 2, 5, 4, 4, 4, 1, 8, 4, 3, 5, 4, 1, 4, 1, 2, 10, 1, 6, 4, 1, 2, 6, 6, 1, 4, 1, 6, 8, 4, 6, 8, 1, 2, 15, 2, 1, 6, 4, 4
OFFSET
1,6
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
EXAMPLE
The a(2) = 1 through a(18) = 4 choices:
1 1 11 1 11 1 111 11 11 1 111 1 11 11 1111 1 111
12 12 13 112 12 13 112
21 14 21 121
23 122
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[Length[Select[Tuples[Divisors/@primeMS[n]], GCD@@#==1&]], {n, 100}]
CROSSREFS
Dominated by A355731, firsts A355732, primes A355741, prime-powers A355742.
For weakly increasing instead of coprime we have A355735, primes A355745.
Positions of first appearances are A355738.
For strict instead of coprime we have A355739, zeros A355740.
A000005 counts divisors.
A001221 counts distinct prime factors, with sum A001414.
A001222 counts prime factors with multiplicity.
A003963 multiplies together the prime indices of n.
A056239 adds up prime indices, row sums of A112798.
A120383 lists numbers divisible by all of their prime indices.
A289508 gives GCD of prime indices.
A289509 ranks relatively prime partitions, odd A302697, squarefree A302796.
A324850 lists numbers divisible by the product of their prime indices.
Sequence in context: A323756 A192710 A316831 * A112380 A272121 A273135
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 17 2022
STATUS
approved